Cargando…
Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue
The activities of some key enzymes in mitochondria from 135 human omental adipose tissue samples of obese and nonobese patients were analyzed for potential association with the patients' state of obesity. The activities of respiratory complexes I and II as well as citrate synthase in isolated m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901984/ https://www.ncbi.nlm.nih.gov/pubmed/24555156 http://dx.doi.org/10.1155/2013/826027 |
_version_ | 1782300937391439872 |
---|---|
author | Christe, Martine Hirzel, Estelle Lindinger, Andrea Kern, Beatrice von Flüe, Markus Peterli, Ralph Peters, Thomas Eberle, Alex N. Lindinger, Peter W. |
author_facet | Christe, Martine Hirzel, Estelle Lindinger, Andrea Kern, Beatrice von Flüe, Markus Peterli, Ralph Peters, Thomas Eberle, Alex N. Lindinger, Peter W. |
author_sort | Christe, Martine |
collection | PubMed |
description | The activities of some key enzymes in mitochondria from 135 human omental adipose tissue samples of obese and nonobese patients were analyzed for potential association with the patients' state of obesity. The activities of respiratory complexes I and II as well as citrate synthase in isolated mitochondria were measured using spectrophotometric enzyme assays. ATP generation of mitochondria was determined with a bioluminescence assay. Protein levels of citrate synthase were quantified by western blot. The rates of ATP generation and the enzymatic activities of complexes I and II did not display associations with age, gender, obesity, or diabetes. By contrast, the enzymatic activities of citrate synthase and its protein levels were significantly reduced in obesity as compared to controls. In diabetic patients, protein levels but not enzymatic activities of citrate synthase were elevated. Thus, this investigation based on enzymatic assay and determination of protein levels revealed that the development of obesity is associated with a significant impact on citrate synthase in mitochondria of human omental adipose tissue. The state of obesity appears to affect mitochondrial function in human omental adipose tissue by limiting this key enzyme of the tricarboxylic acid cycle rather than by limiting the activities of respiratory chain enzymes. |
format | Online Article Text |
id | pubmed-3901984 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-39019842014-02-19 Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue Christe, Martine Hirzel, Estelle Lindinger, Andrea Kern, Beatrice von Flüe, Markus Peterli, Ralph Peters, Thomas Eberle, Alex N. Lindinger, Peter W. ISRN Obes Clinical Study The activities of some key enzymes in mitochondria from 135 human omental adipose tissue samples of obese and nonobese patients were analyzed for potential association with the patients' state of obesity. The activities of respiratory complexes I and II as well as citrate synthase in isolated mitochondria were measured using spectrophotometric enzyme assays. ATP generation of mitochondria was determined with a bioluminescence assay. Protein levels of citrate synthase were quantified by western blot. The rates of ATP generation and the enzymatic activities of complexes I and II did not display associations with age, gender, obesity, or diabetes. By contrast, the enzymatic activities of citrate synthase and its protein levels were significantly reduced in obesity as compared to controls. In diabetic patients, protein levels but not enzymatic activities of citrate synthase were elevated. Thus, this investigation based on enzymatic assay and determination of protein levels revealed that the development of obesity is associated with a significant impact on citrate synthase in mitochondria of human omental adipose tissue. The state of obesity appears to affect mitochondrial function in human omental adipose tissue by limiting this key enzyme of the tricarboxylic acid cycle rather than by limiting the activities of respiratory chain enzymes. Hindawi Publishing Corporation 2013-07-28 /pmc/articles/PMC3901984/ /pubmed/24555156 http://dx.doi.org/10.1155/2013/826027 Text en Copyright © 2013 Martine Christe et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Clinical Study Christe, Martine Hirzel, Estelle Lindinger, Andrea Kern, Beatrice von Flüe, Markus Peterli, Ralph Peters, Thomas Eberle, Alex N. Lindinger, Peter W. Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue |
title | Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue |
title_full | Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue |
title_fullStr | Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue |
title_full_unstemmed | Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue |
title_short | Obesity Affects Mitochondrial Citrate Synthase in Human Omental Adipose Tissue |
title_sort | obesity affects mitochondrial citrate synthase in human omental adipose tissue |
topic | Clinical Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901984/ https://www.ncbi.nlm.nih.gov/pubmed/24555156 http://dx.doi.org/10.1155/2013/826027 |
work_keys_str_mv | AT christemartine obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT hirzelestelle obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT lindingerandrea obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT kernbeatrice obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT vonfluemarkus obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT peterliralph obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT petersthomas obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT eberlealexn obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue AT lindingerpeterw obesityaffectsmitochondrialcitratesynthaseinhumanomentaladiposetissue |