Cargando…

Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice

Aldolase C (Aldoc, also known as “zebrin II”), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujita, Hirofumi, Aoki, Hanako, Ajioka, Itsuki, Yamazaki, Maya, Abe, Manabu, Oh-Nishi, Arata, Sakimura, Kenji, Sugihara, Izumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903578/
https://www.ncbi.nlm.nih.gov/pubmed/24475166
http://dx.doi.org/10.1371/journal.pone.0086679
_version_ 1782301115579105280
author Fujita, Hirofumi
Aoki, Hanako
Ajioka, Itsuki
Yamazaki, Maya
Abe, Manabu
Oh-Nishi, Arata
Sakimura, Kenji
Sugihara, Izumi
author_facet Fujita, Hirofumi
Aoki, Hanako
Ajioka, Itsuki
Yamazaki, Maya
Abe, Manabu
Oh-Nishi, Arata
Sakimura, Kenji
Sugihara, Izumi
author_sort Fujita, Hirofumi
collection PubMed
description Aldolase C (Aldoc, also known as “zebrin II”), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments.
format Online
Article
Text
id pubmed-3903578
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39035782014-01-28 Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice Fujita, Hirofumi Aoki, Hanako Ajioka, Itsuki Yamazaki, Maya Abe, Manabu Oh-Nishi, Arata Sakimura, Kenji Sugihara, Izumi PLoS One Research Article Aldolase C (Aldoc, also known as “zebrin II”), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments. Public Library of Science 2014-01-27 /pmc/articles/PMC3903578/ /pubmed/24475166 http://dx.doi.org/10.1371/journal.pone.0086679 Text en © 2014 Fujita et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Fujita, Hirofumi
Aoki, Hanako
Ajioka, Itsuki
Yamazaki, Maya
Abe, Manabu
Oh-Nishi, Arata
Sakimura, Kenji
Sugihara, Izumi
Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice
title Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice
title_full Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice
title_fullStr Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice
title_full_unstemmed Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice
title_short Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice
title_sort detailed expression pattern of aldolase c (aldoc) in the cerebellum, retina and other areas of the cns studied in aldoc-venus knock-in mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903578/
https://www.ncbi.nlm.nih.gov/pubmed/24475166
http://dx.doi.org/10.1371/journal.pone.0086679
work_keys_str_mv AT fujitahirofumi detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice
AT aokihanako detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice
AT ajiokaitsuki detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice
AT yamazakimaya detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice
AT abemanabu detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice
AT ohnishiarata detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice
AT sakimurakenji detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice
AT sugiharaizumi detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice