Cargando…
Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice
Aldolase C (Aldoc, also known as “zebrin II”), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903578/ https://www.ncbi.nlm.nih.gov/pubmed/24475166 http://dx.doi.org/10.1371/journal.pone.0086679 |
_version_ | 1782301115579105280 |
---|---|
author | Fujita, Hirofumi Aoki, Hanako Ajioka, Itsuki Yamazaki, Maya Abe, Manabu Oh-Nishi, Arata Sakimura, Kenji Sugihara, Izumi |
author_facet | Fujita, Hirofumi Aoki, Hanako Ajioka, Itsuki Yamazaki, Maya Abe, Manabu Oh-Nishi, Arata Sakimura, Kenji Sugihara, Izumi |
author_sort | Fujita, Hirofumi |
collection | PubMed |
description | Aldolase C (Aldoc, also known as “zebrin II”), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments. |
format | Online Article Text |
id | pubmed-3903578 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39035782014-01-28 Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice Fujita, Hirofumi Aoki, Hanako Ajioka, Itsuki Yamazaki, Maya Abe, Manabu Oh-Nishi, Arata Sakimura, Kenji Sugihara, Izumi PLoS One Research Article Aldolase C (Aldoc, also known as “zebrin II”), a brain type isozyme of a glycolysis enzyme, is expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) that are arranged longitudinally in a complex striped pattern in the cerebellar cortex, a pattern which is closely related to the topography of input and output axonal projections. Here, we generated knock-in Aldoc-Venus mice in which Aldoc expression is visualized by expression of a fluorescent protein, Venus. Since there was no obvious phenotypes in general brain morphology and in the striped pattern of the cerebellum in mutants, we made detailed observation of Aldoc expression pattern in the nervous system by using Venus expression in Aldoc-Venus heterozygotes. High levels of Venus expression were observed in cerebellar PCs, cartwheel cells in the dorsal cochlear nucleus, sensory epithelium of the inner ear and in all major types of retinal cells, while moderate levels of Venus expression were observed in astrocytes and satellite cells in the dorsal root ganglion. The striped arrangement of PCs that express Venus to different degrees was carefully traced with serial section alignment analysis and mapped on the unfolded scheme of the entire cerebellar cortex to re-identify all individual Aldoc stripes. A longitudinally striped boundary of Aldoc expression was first identified in the mouse flocculus, and was correlated with the climbing fiber projection pattern and expression of another compartmental marker molecule, heat shock protein 25 (HSP25). As in the rat, the cerebellar nuclei were divided into the rostrodorsal negative and the caudoventral positive portions by distinct projections of Aldoc-positive and negative PC axons in the mouse. Identification of the cerebellar Aldoc stripes in this study, as indicated in sample coronal and horizontal sections as well as in sample surface photos of whole-mount preparations, can be referred to in future experiments. Public Library of Science 2014-01-27 /pmc/articles/PMC3903578/ /pubmed/24475166 http://dx.doi.org/10.1371/journal.pone.0086679 Text en © 2014 Fujita et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Fujita, Hirofumi Aoki, Hanako Ajioka, Itsuki Yamazaki, Maya Abe, Manabu Oh-Nishi, Arata Sakimura, Kenji Sugihara, Izumi Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice |
title | Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice |
title_full | Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice |
title_fullStr | Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice |
title_full_unstemmed | Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice |
title_short | Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice |
title_sort | detailed expression pattern of aldolase c (aldoc) in the cerebellum, retina and other areas of the cns studied in aldoc-venus knock-in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903578/ https://www.ncbi.nlm.nih.gov/pubmed/24475166 http://dx.doi.org/10.1371/journal.pone.0086679 |
work_keys_str_mv | AT fujitahirofumi detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice AT aokihanako detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice AT ajiokaitsuki detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice AT yamazakimaya detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice AT abemanabu detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice AT ohnishiarata detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice AT sakimurakenji detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice AT sugiharaizumi detailedexpressionpatternofaldolasecaldocinthecerebellumretinaandotherareasofthecnsstudiedinaldocvenusknockinmice |