Cargando…
A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event?
Recent research demonstrates that auditory and vibrotactile forward collision warnings presenting a motion signal (e.g., looming or apparent motion across the body surface) can facilitate speeded braking reaction times (BRTs). The purpose of the present study was to expand on this work by directly c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903602/ https://www.ncbi.nlm.nih.gov/pubmed/24475225 http://dx.doi.org/10.1371/journal.pone.0087070 |
_version_ | 1782301119714689024 |
---|---|
author | Gray, Rob Ho, Cristy Spence, Charles |
author_facet | Gray, Rob Ho, Cristy Spence, Charles |
author_sort | Gray, Rob |
collection | PubMed |
description | Recent research demonstrates that auditory and vibrotactile forward collision warnings presenting a motion signal (e.g., looming or apparent motion across the body surface) can facilitate speeded braking reaction times (BRTs). The purpose of the present study was to expand on this work by directly comparing warning signals in which the motion conveyed was constant across all collision events with signals in which the speed of motion was dependent on the closing velocity (CV). Two experiments were conducted using a simulated car-following task and BRTs were measured. In Experiment 1, increasing intensity (looming) vibrotactile signals were presented from a single tactor attached to the driver's waist. When the increase in intensity was CV-linked, BRTs were significantly faster as compared to a no-warning condition, however, they were not significantly different from constant intensity and CV-independent looming warnings. In Experiment 2, a vertical array of three tactors was used to create motion either towards (upwards) or away (downwards) from the driver's head. When the warning signal presented upwards motion that was CV-linked, BRTs were significantly faster than all other warning types. Downwards warnings led to a significantly higher number of brake activations in false alarm situations as compared to upwards moving warnings. The effectiveness of dynamic tactile collision warnings would therefore appear to depend on both the link between the warning and collision event and on the directionality of the warning signal. |
format | Online Article Text |
id | pubmed-3903602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39036022014-01-28 A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event? Gray, Rob Ho, Cristy Spence, Charles PLoS One Research Article Recent research demonstrates that auditory and vibrotactile forward collision warnings presenting a motion signal (e.g., looming or apparent motion across the body surface) can facilitate speeded braking reaction times (BRTs). The purpose of the present study was to expand on this work by directly comparing warning signals in which the motion conveyed was constant across all collision events with signals in which the speed of motion was dependent on the closing velocity (CV). Two experiments were conducted using a simulated car-following task and BRTs were measured. In Experiment 1, increasing intensity (looming) vibrotactile signals were presented from a single tactor attached to the driver's waist. When the increase in intensity was CV-linked, BRTs were significantly faster as compared to a no-warning condition, however, they were not significantly different from constant intensity and CV-independent looming warnings. In Experiment 2, a vertical array of three tactors was used to create motion either towards (upwards) or away (downwards) from the driver's head. When the warning signal presented upwards motion that was CV-linked, BRTs were significantly faster than all other warning types. Downwards warnings led to a significantly higher number of brake activations in false alarm situations as compared to upwards moving warnings. The effectiveness of dynamic tactile collision warnings would therefore appear to depend on both the link between the warning and collision event and on the directionality of the warning signal. Public Library of Science 2014-01-27 /pmc/articles/PMC3903602/ /pubmed/24475225 http://dx.doi.org/10.1371/journal.pone.0087070 Text en © 2014 Gray et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gray, Rob Ho, Cristy Spence, Charles A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event? |
title | A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event? |
title_full | A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event? |
title_fullStr | A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event? |
title_full_unstemmed | A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event? |
title_short | A Comparison of Different Informative Vibrotactile Forward Collision Warnings: Does the Warning Need to Be Linked to the Collision Event? |
title_sort | comparison of different informative vibrotactile forward collision warnings: does the warning need to be linked to the collision event? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903602/ https://www.ncbi.nlm.nih.gov/pubmed/24475225 http://dx.doi.org/10.1371/journal.pone.0087070 |
work_keys_str_mv | AT grayrob acomparisonofdifferentinformativevibrotactileforwardcollisionwarningsdoesthewarningneedtobelinkedtothecollisionevent AT hocristy acomparisonofdifferentinformativevibrotactileforwardcollisionwarningsdoesthewarningneedtobelinkedtothecollisionevent AT spencecharles acomparisonofdifferentinformativevibrotactileforwardcollisionwarningsdoesthewarningneedtobelinkedtothecollisionevent AT grayrob comparisonofdifferentinformativevibrotactileforwardcollisionwarningsdoesthewarningneedtobelinkedtothecollisionevent AT hocristy comparisonofdifferentinformativevibrotactileforwardcollisionwarningsdoesthewarningneedtobelinkedtothecollisionevent AT spencecharles comparisonofdifferentinformativevibrotactileforwardcollisionwarningsdoesthewarningneedtobelinkedtothecollisionevent |