Cargando…
Spike-timing computation properties of a feed-forward neural network model
Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends...
Autores principales: | Sinha, Drew B., Ledbetter, Noah M., Barbour, Dennis L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904091/ https://www.ncbi.nlm.nih.gov/pubmed/24478688 http://dx.doi.org/10.3389/fncom.2014.00005 |
Ejemplares similares
-
Spike-Timing Dependent Plasticity and Feed-Forward Input Oscillations Produce Precise and Invariant Spike Phase-Locking
por: Muller, Lyle, et al.
Publicado: (2011) -
Sparse Computation in Adaptive Spiking Neural Networks
por: Zambrano, Davide, et al.
Publicado: (2019) -
Topological dynamics in spike-timing dependent plastic model neural networks
por: Stone, David B., et al.
Publicado: (2013) -
Propagating synchrony in feed-forward networks
por: Jahnke, Sven, et al.
Publicado: (2013) -
Neural Networks for Modeling Neural Spiking in S1 Cortex
por: Lucas, Alice, et al.
Publicado: (2019)