Cargando…

The Function of the Exocyst is Regulated by Effector Phosphorylation

The exocyst complex tethers vesicles at sites of fusion through interactions with small GTPases. The G-protein RalA resides on Glut4 vesicles, and binds to the exocyst after activation by insulin, but must then disengage to ensure continuous exocytosis. Here we report that after recognition of the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiao-Wei, Leto, Dara, Xiao, Junyu, Goss, John, Wang, Qian, Shavit, Jordan A., Xiong, Tingting, Yu, Genggeng, Ginsburg, David, Toomre, Derek, Xu, Zhaohui, Saltiel, Alan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904505/
https://www.ncbi.nlm.nih.gov/pubmed/21516108
http://dx.doi.org/10.1038/ncb2226
Descripción
Sumario:The exocyst complex tethers vesicles at sites of fusion through interactions with small GTPases. The G-protein RalA resides on Glut4 vesicles, and binds to the exocyst after activation by insulin, but must then disengage to ensure continuous exocytosis. Here we report that after recognition of the exocyst by activated RalA, disengagement occurs through phosphorylation of its effector Sec5, rather than RalA inactivation. Sec5 undergoes phosphorylation in the G-protein binding domain, allosterically reducing RalA interaction. The phosphorylation event is catalyzed by protein kinase C and is reversed by an exocyst-associated phosphatase. Introduction of Sec5 bearing mutations of the phosphorylation site to either alanine or aspartate disrupts insulin-stimulated Glut4 exocytosis, as well as other trafficking processes in polarized epithelial cells and during development of zebrafish embryos. The exocyst thus serves as a “gatekeeper” for exocytic vesicles through a circuit of engagement, disengagement, and re-engagement with G proteins.