Cargando…
Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana
Even within a single genus, such as Drosophila, cases of lineage-specific adaptive evolution have been found. Therefore, the molecular basis of phenotypic variation must be addressed in more than one species group, in order to infer general patterns. In this work, we used D. americana, a species dis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904916/ https://www.ncbi.nlm.nih.gov/pubmed/24489769 http://dx.doi.org/10.1371/journal.pone.0086690 |
_version_ | 1782301258014523392 |
---|---|
author | Reis, Micael Páscoa, Inês Rocha, Helder Aguiar, Bruno Vieira, Cristina P. Vieira, Jorge |
author_facet | Reis, Micael Páscoa, Inês Rocha, Helder Aguiar, Bruno Vieira, Cristina P. Vieira, Jorge |
author_sort | Reis, Micael |
collection | PubMed |
description | Even within a single genus, such as Drosophila, cases of lineage-specific adaptive evolution have been found. Therefore, the molecular basis of phenotypic variation must be addressed in more than one species group, in order to infer general patterns. In this work, we used D. americana, a species distantly-related to D. melanogaster, to perform an F2 association study for developmental time (DT), chill-coma recovery time (CRT), abdominal size (AS) and lifespan (LS) involving the two strains (H5 and W11) whose genomes have been previously sequenced. Significant associations were found between the 43 large indel markers developed here and DT, AS and LS but not with CRT. Significant correlations are also found between DT and LS, and between AS and LS, that might be explained by variation at genes belonging to the insulin and ecdysone signaling pathways. Since, in this F2 association study a single marker, located close to the Ecdysone receptor (EcR) gene, explained as much as 32.6% of the total variation in DT, we performed a second F2 association study, to determine whether large differences in DT are always due to variation in this genome region. No overlapping signal was observed between the two F2 association studies. Overall, these results illustrate that, in D. americana, pleiotropic genes involved in the highly-conserved insulin and ecdysone signaling pathways are likely responsible for variation observed in ecologically relevant phenotypic traits, although other genes are also involved. |
format | Online Article Text |
id | pubmed-3904916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39049162014-01-31 Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana Reis, Micael Páscoa, Inês Rocha, Helder Aguiar, Bruno Vieira, Cristina P. Vieira, Jorge PLoS One Research Article Even within a single genus, such as Drosophila, cases of lineage-specific adaptive evolution have been found. Therefore, the molecular basis of phenotypic variation must be addressed in more than one species group, in order to infer general patterns. In this work, we used D. americana, a species distantly-related to D. melanogaster, to perform an F2 association study for developmental time (DT), chill-coma recovery time (CRT), abdominal size (AS) and lifespan (LS) involving the two strains (H5 and W11) whose genomes have been previously sequenced. Significant associations were found between the 43 large indel markers developed here and DT, AS and LS but not with CRT. Significant correlations are also found between DT and LS, and between AS and LS, that might be explained by variation at genes belonging to the insulin and ecdysone signaling pathways. Since, in this F2 association study a single marker, located close to the Ecdysone receptor (EcR) gene, explained as much as 32.6% of the total variation in DT, we performed a second F2 association study, to determine whether large differences in DT are always due to variation in this genome region. No overlapping signal was observed between the two F2 association studies. Overall, these results illustrate that, in D. americana, pleiotropic genes involved in the highly-conserved insulin and ecdysone signaling pathways are likely responsible for variation observed in ecologically relevant phenotypic traits, although other genes are also involved. Public Library of Science 2014-01-28 /pmc/articles/PMC3904916/ /pubmed/24489769 http://dx.doi.org/10.1371/journal.pone.0086690 Text en © 2014 Reis et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Reis, Micael Páscoa, Inês Rocha, Helder Aguiar, Bruno Vieira, Cristina P. Vieira, Jorge Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana |
title | Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana
|
title_full | Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana
|
title_fullStr | Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana
|
title_full_unstemmed | Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana
|
title_short | Genes Belonging to the Insulin and Ecdysone Signaling Pathways Can Contribute to Developmental Time, Lifespan and Abdominal Size Variation in Drosophila americana
|
title_sort | genes belonging to the insulin and ecdysone signaling pathways can contribute to developmental time, lifespan and abdominal size variation in drosophila americana |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904916/ https://www.ncbi.nlm.nih.gov/pubmed/24489769 http://dx.doi.org/10.1371/journal.pone.0086690 |
work_keys_str_mv | AT reismicael genesbelongingtotheinsulinandecdysonesignalingpathwayscancontributetodevelopmentaltimelifespanandabdominalsizevariationindrosophilaamericana AT pascoaines genesbelongingtotheinsulinandecdysonesignalingpathwayscancontributetodevelopmentaltimelifespanandabdominalsizevariationindrosophilaamericana AT rochahelder genesbelongingtotheinsulinandecdysonesignalingpathwayscancontributetodevelopmentaltimelifespanandabdominalsizevariationindrosophilaamericana AT aguiarbruno genesbelongingtotheinsulinandecdysonesignalingpathwayscancontributetodevelopmentaltimelifespanandabdominalsizevariationindrosophilaamericana AT vieiracristinap genesbelongingtotheinsulinandecdysonesignalingpathwayscancontributetodevelopmentaltimelifespanandabdominalsizevariationindrosophilaamericana AT vieirajorge genesbelongingtotheinsulinandecdysonesignalingpathwayscancontributetodevelopmentaltimelifespanandabdominalsizevariationindrosophilaamericana |