Cargando…

COPA and SLC4A4 are Required for Cellular Entry of Arginine-Rich Peptides

Cell-penetrating peptides (CPPs) have gained attention as promising tools to enable the delivery of various molecules in a non-invasive manner. Among the CPPs, TAT and poly-arginine have been extensively utilized in numerous studies for the delivery of functional proteins, peptides, and macromolecul...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsumuraya, Tomoyuki, Matsushita, Masayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904941/
https://www.ncbi.nlm.nih.gov/pubmed/24489756
http://dx.doi.org/10.1371/journal.pone.0086639
Descripción
Sumario:Cell-penetrating peptides (CPPs) have gained attention as promising tools to enable the delivery of various molecules in a non-invasive manner. Among the CPPs, TAT and poly-arginine have been extensively utilized in numerous studies for the delivery of functional proteins, peptides, and macromolecules to analyze cellular signaling. However, the molecular mechanisms of cellular entry remain largely unknown. Here, we applied siRNA library screening to identify the regulatory genes for the cellular entry of poly-arginine peptide based on microscopic observation of the entry of fluorescent peptides in siRNA-treated cells. In this screening, we identified the cell membrane gene SLC4A4 and the trafficking regulator gene COPA, which also plays an important role in early endosome maturation. These results demonstrated that cellular entry of poly-arginine requires at least two different steps, probably binding on the cell surface and endosomal entry. The identification of genes for cellular entry of poly-arginine provides insights into its mechanisms and should further aid in the development of highly efficient cell-penetrating peptides.