Cargando…
A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation
A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2(+/S252W) mouse...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904987/ https://www.ncbi.nlm.nih.gov/pubmed/24489893 http://dx.doi.org/10.1371/journal.pone.0087311 |
_version_ | 1782301273170640896 |
---|---|
author | Chen, Peng Zhang, Li Weng, Tujun Zhang, Shichang Sun, Shijin Chang, Mingtao Li, Yang Zhang, Bo Zhang, Lianyang |
author_facet | Chen, Peng Zhang, Li Weng, Tujun Zhang, Shichang Sun, Shijin Chang, Mingtao Li, Yang Zhang, Bo Zhang, Lianyang |
author_sort | Chen, Peng |
collection | PubMed |
description | A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2(+/S252W) mouse (a knock-in mouse model mimicking human AS) to demonstrate decreased bone mass due to reduced trabecular bone volume, reduced bone mineral density, and shortened growth plates in the long bones. In vitro bone mesenchymal stem cells (BMSCs) culture studies revealed that the mutant mice showed reduced BMSC proliferation, a reduction in chondrogenic differentiation, and reduced mineralization. Our results suggest that these phenomena are caused by up-regulation of p38 and Erk1/2 phosphorylation. Treatment of cultured mutant bone rudiments with SB203580 or PD98059 resulted in partial rescue of the bone growth retardation. The p38 signaling pathway especially was found to be responsible for the retarded long bone development. Our data indicate that the S252W mutation in FGFR2 directly affects endochondral ossification, resulting in growth retardation of the long bone. We also show that the p38 and Erk1/2 signaling pathways partially mediate the effects of the S252W mutation of FGFR2 on long bone development. |
format | Online Article Text |
id | pubmed-3904987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39049872014-01-31 A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation Chen, Peng Zhang, Li Weng, Tujun Zhang, Shichang Sun, Shijin Chang, Mingtao Li, Yang Zhang, Bo Zhang, Lianyang PLoS One Research Article A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2(+/S252W) mouse (a knock-in mouse model mimicking human AS) to demonstrate decreased bone mass due to reduced trabecular bone volume, reduced bone mineral density, and shortened growth plates in the long bones. In vitro bone mesenchymal stem cells (BMSCs) culture studies revealed that the mutant mice showed reduced BMSC proliferation, a reduction in chondrogenic differentiation, and reduced mineralization. Our results suggest that these phenomena are caused by up-regulation of p38 and Erk1/2 phosphorylation. Treatment of cultured mutant bone rudiments with SB203580 or PD98059 resulted in partial rescue of the bone growth retardation. The p38 signaling pathway especially was found to be responsible for the retarded long bone development. Our data indicate that the S252W mutation in FGFR2 directly affects endochondral ossification, resulting in growth retardation of the long bone. We also show that the p38 and Erk1/2 signaling pathways partially mediate the effects of the S252W mutation of FGFR2 on long bone development. Public Library of Science 2014-01-28 /pmc/articles/PMC3904987/ /pubmed/24489893 http://dx.doi.org/10.1371/journal.pone.0087311 Text en © 2014 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chen, Peng Zhang, Li Weng, Tujun Zhang, Shichang Sun, Shijin Chang, Mingtao Li, Yang Zhang, Bo Zhang, Lianyang A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation |
title | A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation |
title_full | A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation |
title_fullStr | A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation |
title_full_unstemmed | A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation |
title_short | A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation |
title_sort | ser252trp mutation in fibroblast growth factor receptor 2 (fgfr2) mimicking human apert syndrome reveals an essential role for fgf signaling in the regulation of endochondral bone formation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904987/ https://www.ncbi.nlm.nih.gov/pubmed/24489893 http://dx.doi.org/10.1371/journal.pone.0087311 |
work_keys_str_mv | AT chenpeng aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhangli aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT wengtujun aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhangshichang aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT sunshijin aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT changmingtao aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT liyang aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhangbo aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhanglianyang aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT chenpeng ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhangli ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT wengtujun ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhangshichang ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT sunshijin ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT changmingtao ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT liyang ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhangbo ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation AT zhanglianyang ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation |