Cargando…

A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation

A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2(+/S252W) mouse...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Peng, Zhang, Li, Weng, Tujun, Zhang, Shichang, Sun, Shijin, Chang, Mingtao, Li, Yang, Zhang, Bo, Zhang, Lianyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904987/
https://www.ncbi.nlm.nih.gov/pubmed/24489893
http://dx.doi.org/10.1371/journal.pone.0087311
_version_ 1782301273170640896
author Chen, Peng
Zhang, Li
Weng, Tujun
Zhang, Shichang
Sun, Shijin
Chang, Mingtao
Li, Yang
Zhang, Bo
Zhang, Lianyang
author_facet Chen, Peng
Zhang, Li
Weng, Tujun
Zhang, Shichang
Sun, Shijin
Chang, Mingtao
Li, Yang
Zhang, Bo
Zhang, Lianyang
author_sort Chen, Peng
collection PubMed
description A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2(+/S252W) mouse (a knock-in mouse model mimicking human AS) to demonstrate decreased bone mass due to reduced trabecular bone volume, reduced bone mineral density, and shortened growth plates in the long bones. In vitro bone mesenchymal stem cells (BMSCs) culture studies revealed that the mutant mice showed reduced BMSC proliferation, a reduction in chondrogenic differentiation, and reduced mineralization. Our results suggest that these phenomena are caused by up-regulation of p38 and Erk1/2 phosphorylation. Treatment of cultured mutant bone rudiments with SB203580 or PD98059 resulted in partial rescue of the bone growth retardation. The p38 signaling pathway especially was found to be responsible for the retarded long bone development. Our data indicate that the S252W mutation in FGFR2 directly affects endochondral ossification, resulting in growth retardation of the long bone. We also show that the p38 and Erk1/2 signaling pathways partially mediate the effects of the S252W mutation of FGFR2 on long bone development.
format Online
Article
Text
id pubmed-3904987
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39049872014-01-31 A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation Chen, Peng Zhang, Li Weng, Tujun Zhang, Shichang Sun, Shijin Chang, Mingtao Li, Yang Zhang, Bo Zhang, Lianyang PLoS One Research Article A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2(+/S252W) mouse (a knock-in mouse model mimicking human AS) to demonstrate decreased bone mass due to reduced trabecular bone volume, reduced bone mineral density, and shortened growth plates in the long bones. In vitro bone mesenchymal stem cells (BMSCs) culture studies revealed that the mutant mice showed reduced BMSC proliferation, a reduction in chondrogenic differentiation, and reduced mineralization. Our results suggest that these phenomena are caused by up-regulation of p38 and Erk1/2 phosphorylation. Treatment of cultured mutant bone rudiments with SB203580 or PD98059 resulted in partial rescue of the bone growth retardation. The p38 signaling pathway especially was found to be responsible for the retarded long bone development. Our data indicate that the S252W mutation in FGFR2 directly affects endochondral ossification, resulting in growth retardation of the long bone. We also show that the p38 and Erk1/2 signaling pathways partially mediate the effects of the S252W mutation of FGFR2 on long bone development. Public Library of Science 2014-01-28 /pmc/articles/PMC3904987/ /pubmed/24489893 http://dx.doi.org/10.1371/journal.pone.0087311 Text en © 2014 Chen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Chen, Peng
Zhang, Li
Weng, Tujun
Zhang, Shichang
Sun, Shijin
Chang, Mingtao
Li, Yang
Zhang, Bo
Zhang, Lianyang
A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation
title A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation
title_full A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation
title_fullStr A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation
title_full_unstemmed A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation
title_short A Ser252Trp Mutation in Fibroblast Growth Factor Receptor 2 (FGFR2) Mimicking Human Apert Syndrome Reveals an Essential Role for FGF Signaling in the Regulation of Endochondral Bone Formation
title_sort ser252trp mutation in fibroblast growth factor receptor 2 (fgfr2) mimicking human apert syndrome reveals an essential role for fgf signaling in the regulation of endochondral bone formation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904987/
https://www.ncbi.nlm.nih.gov/pubmed/24489893
http://dx.doi.org/10.1371/journal.pone.0087311
work_keys_str_mv AT chenpeng aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhangli aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT wengtujun aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhangshichang aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT sunshijin aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT changmingtao aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT liyang aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhangbo aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhanglianyang aser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT chenpeng ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhangli ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT wengtujun ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhangshichang ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT sunshijin ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT changmingtao ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT liyang ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhangbo ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation
AT zhanglianyang ser252trpmutationinfibroblastgrowthfactorreceptor2fgfr2mimickinghumanapertsyndromerevealsanessentialroleforfgfsignalingintheregulationofendochondralboneformation