Cargando…
Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators
Mechanical exfoliation is a convenient and effective approach to deriving two-dimensional (2D) nanodevices from layered materials; but it is also generally perceived as unpreferred as it often yields devices with structural irregularities and nonidealities. Here we show that such nonidealities can l...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905272/ https://www.ncbi.nlm.nih.gov/pubmed/24472853 http://dx.doi.org/10.1038/srep03919 |
_version_ | 1782301318098976768 |
---|---|
author | Wang, Zenghui Lee, Jaesung He, Keliang Shan, Jie Feng, Philip X.-L. |
author_facet | Wang, Zenghui Lee, Jaesung He, Keliang Shan, Jie Feng, Philip X.-L. |
author_sort | Wang, Zenghui |
collection | PubMed |
description | Mechanical exfoliation is a convenient and effective approach to deriving two-dimensional (2D) nanodevices from layered materials; but it is also generally perceived as unpreferred as it often yields devices with structural irregularities and nonidealities. Here we show that such nonidealities can lead to new and engineerable features that should be embraced and exploited. We measure and analyze high frequency nanomechanical resonators based on exfoliated 2D molybdenum disulfide (MoS(2)) structures, and focus on investigating the effects of structural nonidealities and asymmetries on device characteristics and performance. In high and very high frequency (HF/VHF) vibrating MoS(2) devices based on diaphragms of ~2−5 μm in size, structural nonidealities in shape, boundary, and geometric symmetry all appear not to compromise device performance, but lead to robust devices exhibiting new multimode resonances with characteristics that are inaccessible in their ‘ideal’ counterparts. These results reveal that the seemingly irregular and nonideal 2D structures can be exploited and engineered for new designs and functions. |
format | Online Article Text |
id | pubmed-3905272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-39052722014-01-29 Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators Wang, Zenghui Lee, Jaesung He, Keliang Shan, Jie Feng, Philip X.-L. Sci Rep Article Mechanical exfoliation is a convenient and effective approach to deriving two-dimensional (2D) nanodevices from layered materials; but it is also generally perceived as unpreferred as it often yields devices with structural irregularities and nonidealities. Here we show that such nonidealities can lead to new and engineerable features that should be embraced and exploited. We measure and analyze high frequency nanomechanical resonators based on exfoliated 2D molybdenum disulfide (MoS(2)) structures, and focus on investigating the effects of structural nonidealities and asymmetries on device characteristics and performance. In high and very high frequency (HF/VHF) vibrating MoS(2) devices based on diaphragms of ~2−5 μm in size, structural nonidealities in shape, boundary, and geometric symmetry all appear not to compromise device performance, but lead to robust devices exhibiting new multimode resonances with characteristics that are inaccessible in their ‘ideal’ counterparts. These results reveal that the seemingly irregular and nonideal 2D structures can be exploited and engineered for new designs and functions. Nature Publishing Group 2014-01-29 /pmc/articles/PMC3905272/ /pubmed/24472853 http://dx.doi.org/10.1038/srep03919 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Wang, Zenghui Lee, Jaesung He, Keliang Shan, Jie Feng, Philip X.-L. Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators |
title | Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators |
title_full | Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators |
title_fullStr | Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators |
title_full_unstemmed | Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators |
title_short | Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators |
title_sort | embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905272/ https://www.ncbi.nlm.nih.gov/pubmed/24472853 http://dx.doi.org/10.1038/srep03919 |
work_keys_str_mv | AT wangzenghui embracingstructuralnonidealitiesandasymmetriesintwodimensionalnanomechanicalresonators AT leejaesung embracingstructuralnonidealitiesandasymmetriesintwodimensionalnanomechanicalresonators AT hekeliang embracingstructuralnonidealitiesandasymmetriesintwodimensionalnanomechanicalresonators AT shanjie embracingstructuralnonidealitiesandasymmetriesintwodimensionalnanomechanicalresonators AT fengphilipxl embracingstructuralnonidealitiesandasymmetriesintwodimensionalnanomechanicalresonators |