Cargando…

Topological structure dynamics revealing collective evolution in active nematics

Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Xia-qing, Ma, Yu-qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905717/
https://www.ncbi.nlm.nih.gov/pubmed/24346733
http://dx.doi.org/10.1038/ncomms4013
Descripción
Sumario:Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures.