Cargando…

A paracrine network regulates the cross-talk between human lung stem cells and the stroma

The signals that regulate stem cell self-renewal and differentiation in the lung remain elusive. Lung stem cells undergo self-renewal or lineage commitment to replenish tissue, depending on cross-talk with their environment. This environment, also known as the niche, includes mesenchymal and endothe...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz, E. Josue, Oeztuerk-Winder, Feride, Ventura, Juan-Jose
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905720/
https://www.ncbi.nlm.nih.gov/pubmed/24430801
http://dx.doi.org/10.1038/ncomms4175
Descripción
Sumario:The signals that regulate stem cell self-renewal and differentiation in the lung remain elusive. Lung stem cells undergo self-renewal or lineage commitment to replenish tissue, depending on cross-talk with their environment. This environment, also known as the niche, includes mesenchymal and endothelial tissues. Here we define molecular mechanisms involved in the interaction between human lung Lgr6+ stem cells (LSCs) and fibroblasts in a functional microenvironment. We reveal a central role for p38α MAPK in establishing and maintaining such cross-talk, acting in both cell types. In LSCs, p38α induces the expression of SDF-1, which activates the stroma. p38α is essential for fibroblast activation and induction of cytokine expression, in particular TNFα. This paracrine network induces a hierarchical activation leading to the recruitment of endothelium, establishing a functional microenvironment. Disruption of this cross-talk abrogates proper LSC differentiation in vivo and may lead to lung dysfunction and disease.