Cargando…
Structural insights of non-canonical U•U pair and Hoogsteen interaction probed with Se atom
Unlike DNA, in addition to the 2′-OH group, uracil nucleobase and its modifications play essential roles in structure and function diversities of non-coding RNAs. Non-canonical U•U base pair is ubiquitous in non-coding RNAs, which are highly diversified. However, it is not completely clear how uraci...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905866/ https://www.ncbi.nlm.nih.gov/pubmed/24013566 http://dx.doi.org/10.1093/nar/gkt799 |
Sumario: | Unlike DNA, in addition to the 2′-OH group, uracil nucleobase and its modifications play essential roles in structure and function diversities of non-coding RNAs. Non-canonical U•U base pair is ubiquitous in non-coding RNAs, which are highly diversified. However, it is not completely clear how uracil plays the diversifing roles. To investigate and compare the uracil in U-A and U•U base pairs, we have decided to probe them with a selenium atom by synthesizing the novel 4-Se-uridine ((Se)U) phosphoramidite and Se-nucleobase-modified RNAs ((Se)U-RNAs), where the exo-4-oxygen of uracil is replaced by selenium. Our crystal structure studies of U-A and U•U pairs reveal that the native and Se-derivatized structures are virtually identical, and both U-A and U•U pairs can accommodate large Se atoms. Our thermostability and crystal structure studies indicate that the weakened H-bonding in U-A pair may be compensated by the base stacking, and that the stacking of the trans-Hoogsteen U•U pairs may stabilize RNA duplex and its junction. Our result confirms that the hydrogen bond (O4(…)H-C5) of the Hoogsteen pair is weak. Using the Se atom probe, our Se-functionalization studies reveal more insights into the U•U interaction and U-participation in structure and function diversification of nucleic acids. |
---|