Cargando…
Artificial Evolution by Viability Rather than Competition
Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of diffe...
Autores principales: | Maesani, Andrea, Fernando, Pradeep Ruben, Floreano, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906060/ https://www.ncbi.nlm.nih.gov/pubmed/24489790 http://dx.doi.org/10.1371/journal.pone.0086831 |
Ejemplares similares
-
Disentangling constraints using viability evolution principles in integrative modeling of macromolecular assemblies
por: Tamò, Giorgio, et al.
Publicado: (2017) -
Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns
por: Maesani, Andrea, et al.
Publicado: (2015) -
Bio-inspired artificial intelligence : theories, methods, and technologies /
por: Floreano, Dario
Publicado: (2008) -
Competition Rather Than Observation and Cooperation Facilitates Optimal Motor Planning
por: Tanae, Mamoru, et al.
Publicado: (2021) -
Competition for refuelling rather than cyclic re-entry initiation evident in germinal centers
por: Long, Ziqi, et al.
Publicado: (2022)