Cargando…
powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions
Power laws are theoretically interesting probability distributions that are also frequently used to describe empirical data. In recent years, effective statistical methods for fitting power laws have been developed, but appropriate use of these techniques requires significant programming and statist...
Autores principales: | Alstott, Jeff, Bullmore, Ed, Plenz, Dietmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906378/ https://www.ncbi.nlm.nih.gov/pubmed/24489671 http://dx.doi.org/10.1371/journal.pone.0085777 |
Ejemplares similares
-
Correction: powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions
Publicado: (2014) -
A Unifying Framework for Measuring Weighted Rich Clubs
por: Alstott, Jeff, et al.
Publicado: (2014) -
ccbmlib – a Python package for modeling Tanimoto similarity value distributions
por: Vogt, Martin, et al.
Publicado: (2020) -
An Introduction to Heavy-Tailed and Subexponential Distributions
por: Foss, Sergey, et al.
Publicado: (2011) -
An introduction to heavy-tailed and subexponential distributions
por: Foss, Sergey, et al.
Publicado: (2013)