Cargando…
Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data
Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict lar...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kluwer Academic Publishers-Plenum Publishers
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906711/ https://www.ncbi.nlm.nih.gov/pubmed/24489532 http://dx.doi.org/10.1007/s11306-006-0029-z |
_version_ | 1782301511384039424 |
---|---|
author | Breitling, Rainer Ritchie, Shawn Goodenowe, Dayan Stewart, Mhairi L. Barrett, Michael P. |
author_facet | Breitling, Rainer Ritchie, Shawn Goodenowe, Dayan Stewart, Mhairi L. Barrett, Michael P. |
author_sort | Breitling, Rainer |
collection | PubMed |
description | Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict large metabolic networks ab initio, based only on the observed metabolites without recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers a breakthrough in the systems-wide analysis of cellular metabolism. |
format | Online Article Text |
id | pubmed-3906711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Kluwer Academic Publishers-Plenum Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-39067112014-01-30 Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data Breitling, Rainer Ritchie, Shawn Goodenowe, Dayan Stewart, Mhairi L. Barrett, Michael P. Metabolomics Article Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict large metabolic networks ab initio, based only on the observed metabolites without recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers a breakthrough in the systems-wide analysis of cellular metabolism. Kluwer Academic Publishers-Plenum Publishers 2006-07-25 2006 /pmc/articles/PMC3906711/ /pubmed/24489532 http://dx.doi.org/10.1007/s11306-006-0029-z Text en © Springer Science+Business Media, Inc. 2006 |
spellingShingle | Article Breitling, Rainer Ritchie, Shawn Goodenowe, Dayan Stewart, Mhairi L. Barrett, Michael P. Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data |
title | Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data |
title_full | Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data |
title_fullStr | Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data |
title_full_unstemmed | Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data |
title_short | Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data |
title_sort | ab initio prediction of metabolic networks using fourier transform mass spectrometry data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906711/ https://www.ncbi.nlm.nih.gov/pubmed/24489532 http://dx.doi.org/10.1007/s11306-006-0029-z |
work_keys_str_mv | AT breitlingrainer abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata AT ritchieshawn abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata AT goodenowedayan abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata AT stewartmhairil abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata AT barrettmichaelp abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata |