Cargando…

Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data

Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict lar...

Descripción completa

Detalles Bibliográficos
Autores principales: Breitling, Rainer, Ritchie, Shawn, Goodenowe, Dayan, Stewart, Mhairi L., Barrett, Michael P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Kluwer Academic Publishers-Plenum Publishers 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906711/
https://www.ncbi.nlm.nih.gov/pubmed/24489532
http://dx.doi.org/10.1007/s11306-006-0029-z
_version_ 1782301511384039424
author Breitling, Rainer
Ritchie, Shawn
Goodenowe, Dayan
Stewart, Mhairi L.
Barrett, Michael P.
author_facet Breitling, Rainer
Ritchie, Shawn
Goodenowe, Dayan
Stewart, Mhairi L.
Barrett, Michael P.
author_sort Breitling, Rainer
collection PubMed
description Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict large metabolic networks ab initio, based only on the observed metabolites without recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers a breakthrough in the systems-wide analysis of cellular metabolism.
format Online
Article
Text
id pubmed-3906711
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Kluwer Academic Publishers-Plenum Publishers
record_format MEDLINE/PubMed
spelling pubmed-39067112014-01-30 Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data Breitling, Rainer Ritchie, Shawn Goodenowe, Dayan Stewart, Mhairi L. Barrett, Michael P. Metabolomics Article Fourier transform mass spectrometry has recently been introduced into the field of metabolomics as a technique that enables the mass separation of complex mixtures at very high resolution and with ultra high mass accuracy. Here we show that this enhanced mass accuracy can be exploited to predict large metabolic networks ab initio, based only on the observed metabolites without recourse to predictions based on the literature. The resulting networks are highly information-rich and clearly non-random. They can be used to infer the chemical identity of metabolites and to obtain a global picture of the structure of cellular metabolic networks. This represents the first reconstruction of metabolic networks based on unbiased metabolomic data and offers a breakthrough in the systems-wide analysis of cellular metabolism. Kluwer Academic Publishers-Plenum Publishers 2006-07-25 2006 /pmc/articles/PMC3906711/ /pubmed/24489532 http://dx.doi.org/10.1007/s11306-006-0029-z Text en © Springer Science+Business Media, Inc. 2006
spellingShingle Article
Breitling, Rainer
Ritchie, Shawn
Goodenowe, Dayan
Stewart, Mhairi L.
Barrett, Michael P.
Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data
title Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data
title_full Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data
title_fullStr Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data
title_full_unstemmed Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data
title_short Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data
title_sort ab initio prediction of metabolic networks using fourier transform mass spectrometry data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906711/
https://www.ncbi.nlm.nih.gov/pubmed/24489532
http://dx.doi.org/10.1007/s11306-006-0029-z
work_keys_str_mv AT breitlingrainer abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata
AT ritchieshawn abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata
AT goodenowedayan abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata
AT stewartmhairil abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata
AT barrettmichaelp abinitiopredictionofmetabolicnetworksusingfouriertransformmassspectrometrydata