Cargando…

Timing over Tuning: Overcoming the Shortcomings of a Line Attractor during a Working Memory Task

How the brain stores information about a sensory stimulus in working memory is not completely known. Clues about the mechanisms responsible for working memory can be gleaned by recording from neurons during the performance of a delayed response task. I focus on the data recorded during such an exper...

Descripción completa

Detalles Bibliográficos
Autor principal: Drover, Jonathan D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907287/
https://www.ncbi.nlm.nih.gov/pubmed/24499929
http://dx.doi.org/10.1371/journal.pcbi.1003437
Descripción
Sumario:How the brain stores information about a sensory stimulus in working memory is not completely known. Clues about the mechanisms responsible for working memory can be gleaned by recording from neurons during the performance of a delayed response task. I focus on the data recorded during such an experiment, a classic tactile discrimination task. I describe how the observed variability in the firing rate during a trial suggests that the type of attractor that is responsible for holding the stimulus information is not a fixed-point type attractor. I propose an alternate mechanism to a line attractor that allows the network to hold the value of an analog stimulus variable for the duration of the delay period, but rather than maintain a constant level of activity, the cells' firing rate varies throughout the delay period. I describe how my proposed mechanism offers a substantial advantage over a line attractor: The tuning requirements of cell to cell connections are greatly eased from that of a line attractor. To accommodate a change in the length of the delay period, I show that the network can be altered by changing a single parameter - the timing of an executive signal that originates outside of the network. To demonstrate the mechanism, as well as the tuning benefits, I use a well known model of propagation in neuronal networks.