Cargando…

Identification of b-/y-ions in MS/MS spectra using a two stage neural network

Independent of the approach used, the ability to correctly interpret tandem MS data depends on the quality of the original spectra. Even in the case of the highest quality spectra, the majority of spectral peaks can not be reliably interpreted. The accuracy of sequencing algorithms can be improved b...

Descripción completa

Detalles Bibliográficos
Autores principales: Cleveland, James P, Rose, John R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907776/
https://www.ncbi.nlm.nih.gov/pubmed/24565419
http://dx.doi.org/10.1186/1477-5956-11-S1-S4
Descripción
Sumario:Independent of the approach used, the ability to correctly interpret tandem MS data depends on the quality of the original spectra. Even in the case of the highest quality spectra, the majority of spectral peaks can not be reliably interpreted. The accuracy of sequencing algorithms can be improved by filtering out such 'noise' peaks. Preprocessing MS/MS spectra to select informative ion peaks increases accuracy and reduces the processing time. Intuitively, the mix of informative versus non-informative peaks has a direct effect on the quality and size of the resulting candidate peptide search space. As the number of selected peaks increases, the corresponding search space increases exponentially. If we select too few peaks then the ion-ladder interpretation of the spectrum will contain gaps that can only be explained by permutations of combinations of amino acids. This will result in a larger candidate peptide search space and poorer quality candidates. The dependency that peptide sequencing accuracy has on an initial peak selection regime makes this preprocessing step a crucial facet of any approach, whether de novo or not, to MS/MS spectra interpretation. We have developed a novel approach to address this problem. Our approach uses a staged neural network to model ion fragmentation patterns and estimate the posterior probability of each ion type. Our method improves upon other preprocessing techniques and shows a significant reduction in the search space for candidate peptides without sacrificing candidate peptide quality.