Cargando…

Increased Preventive Effect on Colon Carcinogenesis by Use of Resistant Starch (RS3) as the Carrier for Polysaccharide of Larimichthys Crocea Swimming Bladder

The preventive effect of polysaccharide of Larimichthys crocea swimming bladder (PLCSB) and the increase of this effect by use of resistant starch (RS3) as the carrier for PLCSB on azoxymethane (AOM) and dextran sulfate sodium (DSS)-inducing colon carcinogenesis in C57BL/6 mice has been studied. RS3...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Lian-Hong, Song, Jia-Le, Qian, Yu, Zhao, Xin, Suo, Hua-Yi, Li, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907840/
https://www.ncbi.nlm.nih.gov/pubmed/24413751
http://dx.doi.org/10.3390/ijms15010817
Descripción
Sumario:The preventive effect of polysaccharide of Larimichthys crocea swimming bladder (PLCSB) and the increase of this effect by use of resistant starch (RS3) as the carrier for PLCSB on azoxymethane (AOM) and dextran sulfate sodium (DSS)-inducing colon carcinogenesis in C57BL/6 mice has been studied. RS3 microspheres carrying PLCSB (RS3 + PLCSB) were produced and evaluated as a potentially improved colon carcinogenesis therapy for this study. The body weight, colon length, and colon weight of mice were determined, and colonic tissues were histologically observed. The serum levels of proinflammatory cytokines and the inflammation and apoptosis-related genes in colonic tissue were also tested. The PLCSB or RS3 + PLCSB significantly suppressed AOM and DSS-induced body weight loss, colon length shortening and decreased the colon weight to length ratio. PLCSB or RS3 + PLCSB reduced the levels of the serum pro-inflammatory cytokines IL-6, IL-12, TNF-α, and IFN-γ to a greater extent compared with the control mice, and the levels of RS3 + PLCSB were more close to the normal mice than PLCSB treated mice. Histopathological examination of sections of colon tissues showed that the RS3 + PLCSB group recovered well from colon carcinogenesis; however, the tissue sections of the stachyose + starch could reduce the necrosis degree. PLCSB significantly induced apoptosis in tissues of mice (p < 0.05) by up-regulating Bax, caspase-3, and caspase-9, and down-regulating Bcl-2. The expression of genes associated with inflammation-related NF-κB, iNOS, and COX-2 genes, was significantly down-regulated, and IκB-α was up-regulated (p < 0.05). These results suggest that PLCSB is a potent preventive against in vivo colon carcinogenesis and that PLCSB with an RS3 carrier could increase the preventative effect in mice.