Cargando…
Learning-Induced Changes in Attentional Allocation during Categorization: A Sizable Catalog of Attention Change as Measured by Eye Movements
Learning how to allocate attention properly is essential for success at many categorization tasks. Advances in our understanding of learned attention are stymied by a chicken-and-egg problem: there are no theoretical accounts of learned attention that predict patterns of eye movements, making data c...
Autores principales: | McColeman, Caitlyn M., Barnes, Jordan I., Chen, Lihan, Meier, Kimberly M., Walshe, R. Calen, Blair, Mark R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908863/ https://www.ncbi.nlm.nih.gov/pubmed/24497915 http://dx.doi.org/10.1371/journal.pone.0083302 |
Ejemplares similares
-
LAG-1: A dynamic, integrative model of learning, attention, and gaze
por: Barnes, Jordan, et al.
Publicado: (2022) -
Dissociating Attention and Eye Movements in a Quantitative Analysis of Attention Allocation
por: Heyman, Gene M., et al.
Publicado: (2017) -
Examples of sizable Higgs non-Standardness
por: Delaunay, Cedric
Publicado: (2013) -
Classic motor chunking theory fails to account for behavioural diversity and speed in a complex naturalistic task
por: Thompson, Joseph J., et al.
Publicado: (2019) -
Tunable and sizable band gap in silicene by surface adsorption
por: Quhe, Ruge, et al.
Publicado: (2012)