Cargando…
Integrative Gene Network Construction to Analyze Cancer Recurrence Using Semi-Supervised Learning
BACKGROUND: The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses...
Autores principales: | Park, Chihyun, Ahn, Jaegyoon, Kim, Hyunjin, Park, Sanghyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908883/ https://www.ncbi.nlm.nih.gov/pubmed/24497942 http://dx.doi.org/10.1371/journal.pone.0086309 |
Ejemplares similares
-
A Multi-Sample Based Method for Identifying Common CNVs in Normal Human Genomic Structure Using High-Resolution aCGH Data
por: Park, Chihyun, et al.
Publicado: (2011) -
Novel deep learning model for more accurate prediction of drug-drug interaction effects
por: Lee, Geonhee, et al.
Publicado: (2019) -
RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance
por: Choi, Jonghwan, et al.
Publicado: (2020) -
Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles
por: Park, Chihyun, et al.
Publicado: (2018) -
Semi-Supervised Multi-View Learning for Gene Network Reconstruction
por: Ceci, Michelangelo, et al.
Publicado: (2015)