Cargando…

Integration of the olfactory code across dendritic claws of single mushroom body neurons

In the olfactory system, sensory inputs are arranged in different glomerular channels, which respond in combinatorial ensembles to the various chemical features of an odor. Here we investigate where and how this combinatorial code is read out deeper in the brain. We exploit the unique morphology of...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruntman, Eyal, Turner, Glenn C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908930/
https://www.ncbi.nlm.nih.gov/pubmed/24141312
http://dx.doi.org/10.1038/nn.3547
Descripción
Sumario:In the olfactory system, sensory inputs are arranged in different glomerular channels, which respond in combinatorial ensembles to the various chemical features of an odor. Here we investigate where and how this combinatorial code is read out deeper in the brain. We exploit the unique morphology of neurons in the mushroom body (MB), which receive input on large dendritic claws. Imaging odor responses of these dendritic claws shows that input channels with distinct odor tuning converge on individual MB neurons. We determined how these inputs interact to drive the cell to spike threshold using intracellular recordings to examine MB responses to optogenetically controlled input. Our results provide an elegant explanation for the characteristic selectivity of MB neurons: these cells receive different types of input, and require those inputs to be coactive in order to spike. These results establish the MB as an important site of integration in the fly olfactory system.