Cargando…

An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists

Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a...

Descripción completa

Detalles Bibliográficos
Autores principales: De Spiegeleer, Anton, Wynendaele, Evelien, Vandekerckhove, Matthias, Stalmans, Sofie, Boucart, Maxime, Van Den Noortgate, Nele, Venken, Koen, Van Calenbergh, Serge, Aspeslagh, Sandrine, Elewaut, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909045/
https://www.ncbi.nlm.nih.gov/pubmed/24498010
http://dx.doi.org/10.1371/journal.pone.0087000
_version_ 1782301779735609344
author De Spiegeleer, Anton
Wynendaele, Evelien
Vandekerckhove, Matthias
Stalmans, Sofie
Boucart, Maxime
Van Den Noortgate, Nele
Venken, Koen
Van Calenbergh, Serge
Aspeslagh, Sandrine
Elewaut, Dirk
author_facet De Spiegeleer, Anton
Wynendaele, Evelien
Vandekerckhove, Matthias
Stalmans, Sofie
Boucart, Maxime
Van Den Noortgate, Nele
Venken, Koen
Van Calenbergh, Serge
Aspeslagh, Sandrine
Elewaut, Dirk
author_sort De Spiegeleer, Anton
collection PubMed
description Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different test-systems. We linked the chemical space to the immunological space using a system biology computational approach resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of iNKT cell activation by α-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists.
format Online
Article
Text
id pubmed-3909045
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39090452014-02-04 An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists De Spiegeleer, Anton Wynendaele, Evelien Vandekerckhove, Matthias Stalmans, Sofie Boucart, Maxime Van Den Noortgate, Nele Venken, Koen Van Calenbergh, Serge Aspeslagh, Sandrine Elewaut, Dirk PLoS One Research Article Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different test-systems. We linked the chemical space to the immunological space using a system biology computational approach resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of iNKT cell activation by α-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists. Public Library of Science 2014-01-31 /pmc/articles/PMC3909045/ /pubmed/24498010 http://dx.doi.org/10.1371/journal.pone.0087000 Text en © 2014 De Spiegeleer et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
De Spiegeleer, Anton
Wynendaele, Evelien
Vandekerckhove, Matthias
Stalmans, Sofie
Boucart, Maxime
Van Den Noortgate, Nele
Venken, Koen
Van Calenbergh, Serge
Aspeslagh, Sandrine
Elewaut, Dirk
An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists
title An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists
title_full An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists
title_fullStr An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists
title_full_unstemmed An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists
title_short An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists
title_sort in silico approach for modelling t-helper polarizing inkt cell agonists
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909045/
https://www.ncbi.nlm.nih.gov/pubmed/24498010
http://dx.doi.org/10.1371/journal.pone.0087000
work_keys_str_mv AT despiegeleeranton aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT wynendaeleevelien aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT vandekerckhovematthias aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT stalmanssofie aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT boucartmaxime aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT vandennoortgatenele aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT venkenkoen aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT vancalenberghserge aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT aspeslaghsandrine aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT elewautdirk aninsilicoapproachformodellingthelperpolarizinginktcellagonists
AT despiegeleeranton insilicoapproachformodellingthelperpolarizinginktcellagonists
AT wynendaeleevelien insilicoapproachformodellingthelperpolarizinginktcellagonists
AT vandekerckhovematthias insilicoapproachformodellingthelperpolarizinginktcellagonists
AT stalmanssofie insilicoapproachformodellingthelperpolarizinginktcellagonists
AT boucartmaxime insilicoapproachformodellingthelperpolarizinginktcellagonists
AT vandennoortgatenele insilicoapproachformodellingthelperpolarizinginktcellagonists
AT venkenkoen insilicoapproachformodellingthelperpolarizinginktcellagonists
AT vancalenberghserge insilicoapproachformodellingthelperpolarizinginktcellagonists
AT aspeslaghsandrine insilicoapproachformodellingthelperpolarizinginktcellagonists
AT elewautdirk insilicoapproachformodellingthelperpolarizinginktcellagonists