Cargando…
Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory
BACKGROUND: Functional magnetic resonance imaging (fMRI) studies indicate that the brain organizes its activity into multiple functional networks (FNs) during either resting condition or task-performance. However, the functions of these FNs are not fully understood yet. METHODOLOGY/PRINCIPAL FINDING...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909055/ https://www.ncbi.nlm.nih.gov/pubmed/24498021 http://dx.doi.org/10.1371/journal.pone.0087078 |
_version_ | 1782301782006824960 |
---|---|
author | Xu, Jiansong Calhoun, Vince D. Pearlson, Godfrey D. Potenza, Marc N. |
author_facet | Xu, Jiansong Calhoun, Vince D. Pearlson, Godfrey D. Potenza, Marc N. |
author_sort | Xu, Jiansong |
collection | PubMed |
description | BACKGROUND: Functional magnetic resonance imaging (fMRI) studies indicate that the brain organizes its activity into multiple functional networks (FNs) during either resting condition or task-performance. However, the functions of these FNs are not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the operation of these FNs, spatial independent component analysis (sICA) was used to extract FNs from fMRI data acquired from healthy participants performing a visual task with two levels of attention and working memory load. The task-related modulations of extracted FNs were assessed. A group of FNs showed increased activity at low-load conditions and reduced activity at high-load conditions. These FNs together involve the left lateral frontoparietal cortex, insula, and ventromedial prefrontal cortex. A second group of FNs showed increased activity at high-load conditions and reduced activity at low-load conditions. These FNs together involve the intraparietal sulcus, frontal eye field, lateral frontoparietal cortex, insula, and dorsal anterior cingulate, bilaterally. Though the two groups of FNs showed opposite task-related modulations, they overlapped extensively at both the lateral and medial frontoparietal cortex and insula. Such an overlap of FNs would not likely be revealed using standard general-linear-model-based analyses. CONCLUSIONS: By assessing task-related modulations, this study differentiated the functional roles of overlapping FNs. Several FNs including the left frontoparietal network are implicated in task conditions of low attentional load, while another set of FNs including the dorsal attentional network is implicated in task conditions involving high attentional demands. |
format | Online Article Text |
id | pubmed-3909055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39090552014-02-04 Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory Xu, Jiansong Calhoun, Vince D. Pearlson, Godfrey D. Potenza, Marc N. PLoS One Research Article BACKGROUND: Functional magnetic resonance imaging (fMRI) studies indicate that the brain organizes its activity into multiple functional networks (FNs) during either resting condition or task-performance. However, the functions of these FNs are not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the operation of these FNs, spatial independent component analysis (sICA) was used to extract FNs from fMRI data acquired from healthy participants performing a visual task with two levels of attention and working memory load. The task-related modulations of extracted FNs were assessed. A group of FNs showed increased activity at low-load conditions and reduced activity at high-load conditions. These FNs together involve the left lateral frontoparietal cortex, insula, and ventromedial prefrontal cortex. A second group of FNs showed increased activity at high-load conditions and reduced activity at low-load conditions. These FNs together involve the intraparietal sulcus, frontal eye field, lateral frontoparietal cortex, insula, and dorsal anterior cingulate, bilaterally. Though the two groups of FNs showed opposite task-related modulations, they overlapped extensively at both the lateral and medial frontoparietal cortex and insula. Such an overlap of FNs would not likely be revealed using standard general-linear-model-based analyses. CONCLUSIONS: By assessing task-related modulations, this study differentiated the functional roles of overlapping FNs. Several FNs including the left frontoparietal network are implicated in task conditions of low attentional load, while another set of FNs including the dorsal attentional network is implicated in task conditions involving high attentional demands. Public Library of Science 2014-01-31 /pmc/articles/PMC3909055/ /pubmed/24498021 http://dx.doi.org/10.1371/journal.pone.0087078 Text en © 2014 Xu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Xu, Jiansong Calhoun, Vince D. Pearlson, Godfrey D. Potenza, Marc N. Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory |
title | Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory |
title_full | Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory |
title_fullStr | Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory |
title_full_unstemmed | Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory |
title_short | Opposite Modulation of Brain Functional Networks Implicated at Low vs. High Demand of Attention and Working Memory |
title_sort | opposite modulation of brain functional networks implicated at low vs. high demand of attention and working memory |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909055/ https://www.ncbi.nlm.nih.gov/pubmed/24498021 http://dx.doi.org/10.1371/journal.pone.0087078 |
work_keys_str_mv | AT xujiansong oppositemodulationofbrainfunctionalnetworksimplicatedatlowvshighdemandofattentionandworkingmemory AT calhounvinced oppositemodulationofbrainfunctionalnetworksimplicatedatlowvshighdemandofattentionandworkingmemory AT pearlsongodfreyd oppositemodulationofbrainfunctionalnetworksimplicatedatlowvshighdemandofattentionandworkingmemory AT potenzamarcn oppositemodulationofbrainfunctionalnetworksimplicatedatlowvshighdemandofattentionandworkingmemory |