Cargando…
Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity
Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing deat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909113/ https://www.ncbi.nlm.nih.gov/pubmed/24498105 http://dx.doi.org/10.1371/journal.pone.0087435 |
_version_ | 1782301792292306944 |
---|---|
author | Wijayalath, Wathsala Majji, Sai Kleschenko, Yuliya Pow-Sang, Luis Brumeanu, Teodor D. Villasante, Eileen Franke Vasta, Gerardo R. Fernández-Robledo, José-Antonio Casares, Sofia |
author_facet | Wijayalath, Wathsala Majji, Sai Kleschenko, Yuliya Pow-Sang, Luis Brumeanu, Teodor D. Villasante, Eileen Franke Vasta, Gerardo R. Fernández-Robledo, José-Antonio Casares, Sofia |
author_sort | Wijayalath, Wathsala |
collection | PubMed |
description | Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0)) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0) mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0) mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0) mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents. |
format | Online Article Text |
id | pubmed-3909113 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39091132014-02-04 Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity Wijayalath, Wathsala Majji, Sai Kleschenko, Yuliya Pow-Sang, Luis Brumeanu, Teodor D. Villasante, Eileen Franke Vasta, Gerardo R. Fernández-Robledo, José-Antonio Casares, Sofia PLoS One Research Article Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0)) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0) mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0) mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0) mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents. Public Library of Science 2014-01-31 /pmc/articles/PMC3909113/ /pubmed/24498105 http://dx.doi.org/10.1371/journal.pone.0087435 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Wijayalath, Wathsala Majji, Sai Kleschenko, Yuliya Pow-Sang, Luis Brumeanu, Teodor D. Villasante, Eileen Franke Vasta, Gerardo R. Fernández-Robledo, José-Antonio Casares, Sofia Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity |
title | Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity |
title_full | Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity |
title_fullStr | Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity |
title_full_unstemmed | Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity |
title_short | Humanized HLA-DR4 Mice Fed with the Protozoan Pathogen of Oysters Perkinsus Marinus (Dermo) Do Not Develop Noticeable Pathology but Elicit Systemic Immunity |
title_sort | humanized hla-dr4 mice fed with the protozoan pathogen of oysters perkinsus marinus (dermo) do not develop noticeable pathology but elicit systemic immunity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909113/ https://www.ncbi.nlm.nih.gov/pubmed/24498105 http://dx.doi.org/10.1371/journal.pone.0087435 |
work_keys_str_mv | AT wijayalathwathsala humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT majjisai humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT kleschenkoyuliya humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT powsangluis humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT brumeanuteodord humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT villasanteeileenfranke humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT vastagerardor humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT fernandezrobledojoseantonio humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity AT casaressofia humanizedhladr4micefedwiththeprotozoanpathogenofoystersperkinsusmarinusdermodonotdevelopnoticeablepathologybutelicitsystemicimmunity |