Cargando…
Semi-supervised method for biomedical event extraction
BACKGROUND: Biomedical extraction based on supervised machine learning still faces the problem that a limited labeled dataset does not saturate the learning method. Many supervised learning algorithms for bio-event extraction have been affected by the data sparseness. METHODS: In this study, a semi-...
Autores principales: | Wang, Jian, Xu, Qian, Lin, Hongfei, Yang, Zhihao, Li, Yanpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909242/ https://www.ncbi.nlm.nih.gov/pubmed/24565105 http://dx.doi.org/10.1186/1477-5956-11-S1-S17 |
Ejemplares similares
-
A multiple distributed representation method based on neural network for biomedical event extraction
por: Wang, Anran, et al.
Publicado: (2017) -
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
por: Shang, Yue, et al.
Publicado: (2011) -
A Single Kernel-Based Approach to Extract Drug-Drug Interactions from Biomedical Literature
por: Zhang, Yijia, et al.
Publicado: (2012) -
Supervised Learning Based Hypothesis Generation from Biomedical Literature
por: Sang, Shengtian, et al.
Publicado: (2015) -
A supervised term ranking model for diversity enhanced biomedical information retrieval
por: Xu, Bo, et al.
Publicado: (2019)