Cargando…

Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus

Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis...

Descripción completa

Detalles Bibliográficos
Autores principales: Theisen, Linda L., Erdelmeier, Clemens A. J., Spoden, Gilles A., Boukhallouk, Fatima, Sausy, Aurélie, Florin, Luise, Muller, Claude P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909258/
https://www.ncbi.nlm.nih.gov/pubmed/24498245
http://dx.doi.org/10.1371/journal.pone.0088062
_version_ 1782301814407823360
author Theisen, Linda L.
Erdelmeier, Clemens A. J.
Spoden, Gilles A.
Boukhallouk, Fatima
Sausy, Aurélie
Florin, Luise
Muller, Claude P.
author_facet Theisen, Linda L.
Erdelmeier, Clemens A. J.
Spoden, Gilles A.
Boukhallouk, Fatima
Sausy, Aurélie
Florin, Luise
Muller, Claude P.
author_sort Theisen, Linda L.
collection PubMed
description Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals.
format Online
Article
Text
id pubmed-3909258
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39092582014-02-04 Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus Theisen, Linda L. Erdelmeier, Clemens A. J. Spoden, Gilles A. Boukhallouk, Fatima Sausy, Aurélie Florin, Luise Muller, Claude P. PLoS One Research Article Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals. Public Library of Science 2014-01-31 /pmc/articles/PMC3909258/ /pubmed/24498245 http://dx.doi.org/10.1371/journal.pone.0088062 Text en © 2014 Theisen et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Theisen, Linda L.
Erdelmeier, Clemens A. J.
Spoden, Gilles A.
Boukhallouk, Fatima
Sausy, Aurélie
Florin, Luise
Muller, Claude P.
Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus
title Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus
title_full Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus
title_fullStr Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus
title_full_unstemmed Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus
title_short Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus
title_sort tannins from hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza a virus and human papillomavirus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909258/
https://www.ncbi.nlm.nih.gov/pubmed/24498245
http://dx.doi.org/10.1371/journal.pone.0088062
work_keys_str_mv AT theisenlindal tanninsfromhamamelisvirginianabarkextractcharacterizationandimprovementoftheantiviralefficacyagainstinfluenzaavirusandhumanpapillomavirus
AT erdelmeierclemensaj tanninsfromhamamelisvirginianabarkextractcharacterizationandimprovementoftheantiviralefficacyagainstinfluenzaavirusandhumanpapillomavirus
AT spodengillesa tanninsfromhamamelisvirginianabarkextractcharacterizationandimprovementoftheantiviralefficacyagainstinfluenzaavirusandhumanpapillomavirus
AT boukhalloukfatima tanninsfromhamamelisvirginianabarkextractcharacterizationandimprovementoftheantiviralefficacyagainstinfluenzaavirusandhumanpapillomavirus
AT sausyaurelie tanninsfromhamamelisvirginianabarkextractcharacterizationandimprovementoftheantiviralefficacyagainstinfluenzaavirusandhumanpapillomavirus
AT florinluise tanninsfromhamamelisvirginianabarkextractcharacterizationandimprovementoftheantiviralefficacyagainstinfluenzaavirusandhumanpapillomavirus
AT mullerclaudep tanninsfromhamamelisvirginianabarkextractcharacterizationandimprovementoftheantiviralefficacyagainstinfluenzaavirusandhumanpapillomavirus