Cargando…
Quantifying Significance of Topographical Similarities of Disease-Related Brain Metabolic Patterns
Multivariate analytical routines have become increasingly popular in the study of cerebral function in health and in disease states. Spatial covariance analysis of functional neuroimaging data has been used to identify and validate characteristic topographies associated with specific brain disorders...
Autores principales: | Ko, Ji Hyun, Spetsieris, Phoebe, Ma, Yilong, Dhawan, Vijay, Eidelberg, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909315/ https://www.ncbi.nlm.nih.gov/pubmed/24498250 http://dx.doi.org/10.1371/journal.pone.0088119 |
Ejemplares similares
-
Spectral guided sparse inverse covariance estimation of metabolic networks in Parkinson’s disease
por: Spetsieris, Phoebe G., et al.
Publicado: (2020) -
Radiomics and supervised machine learning in the diagnosis of parkinsonism with FDG PET: promises and challenges
por: Peng, Shichun, et al.
Publicado: (2020) -
Parkinson’s disease progression: Increasing expression of an invariant common core subnetwork
por: Spetsieris, Phoebe G., et al.
Publicado: (2023) -
A multivariate metabolic imaging marker for behavioral variant frontotemporal dementia
por: Nazem, Amir, et al.
Publicado: (2018) -
Neuroimaging evaluation of deep brain stimulation in the treatment of representative neurodegenerative and neuropsychiatric disorders
por: Peng, Shichun, et al.
Publicado: (2021)