Cargando…

Synthesis and In Vitro Cytotoxic Activity of Novel Chalcone-Like Agents

Objective(s): Chalcones and their rigid analogues represent an important class of small molecules having anticancer activities. Therefore, in this study the synthesis and cytotoxic activity of new 3-benzylidenchroman-4-ones were described as rigid chalcone analogues. Materials and Methods: The react...

Descripción completa

Detalles Bibliográficos
Autores principales: Letafat, Bahram, Shakeri, Raheleh, Emami, Saeed, Noushini, Saeedeh, Mohammadhosseini, Negar, Shirkavand, Nayyereh, Kabudanian Ardestani, Sussan, Safavi, Maliheh, Samadizadeh, Marjaneh, Letafat, Aida, Shafiee, Abbas, Foroumadi, Alireza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mashhad University of Medical Sciences 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909627/
https://www.ncbi.nlm.nih.gov/pubmed/24494068
Descripción
Sumario:Objective(s): Chalcones and their rigid analogues represent an important class of small molecules having anticancer activities. Therefore, in this study the synthesis and cytotoxic activity of new 3-benzylidenchroman-4-ones were described as rigid chalcone analogues. Materials and Methods: The reaction of resorcinol with 3-chloropropionic acid in the presence of CF(3)SO(3)H was afforded corresponding propiophenone. It was cyclized using 2M NaOH to give 7-hydroxy-4-chromanone. O-Alkylation of 7-hydroxy-4-chromanone with alkyl iodide in the presence of K(2)CO(3) gave 7-alkoxychroman-4-one. Finally, condensation of chroman-4-one derivatives with different aldehydes afforded target compounds in good yields. The newly synthesized compounds were tested in vitro against different human cancer cell lines including K562 (human erythroleukemia), MDA-MB-231 (human breast cancer), and SK-N-MC (human neuroblastoma) cells. The cell viability was evaluated using MTT colorimetric assay. Results: Most of the compounds showed good inhibitory activity against cancer cells. Among them, compound 4a containing 7-hydroxy group on chromanone ring and 3-bromo-4-hydroxy-5-methoxy substitution pattern on benzylidene moiety was the most potent compound with IC(50) values ≤ 3.86 µg/ml. It was 6-17 times more potent than etoposide against tested cell lines. Conclusion: We described synthesis and cytotoxic activity of poly-functionalized 3-benzylidenechroman-4-ones as new chalcone-like agents. These compounds can be considered as conformationally constrained congeners of chalcones to tolerate the poly-functionalization on the core structures for further optimization.