Cargando…
The structural mechanism of KCNH-channel regulation by the eag domain
The KCNH voltage-dependent potassium channels (ether-á-go-go, EAG; EAG-related gene, ERG; EAG-like channels, ELK) are important regulators of cellular excitability(1-3) and have key roles in diseases such as cardiac long QT syndrome type 2 (LQT2)(4), epilepsy(5), schizophrenia(6) and cancer(7). The...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910112/ https://www.ncbi.nlm.nih.gov/pubmed/23975098 http://dx.doi.org/10.1038/nature12487 |
_version_ | 1782301930380328960 |
---|---|
author | Haitin, Yoni Carlson, Anne E. Zagotta, William N. |
author_facet | Haitin, Yoni Carlson, Anne E. Zagotta, William N. |
author_sort | Haitin, Yoni |
collection | PubMed |
description | The KCNH voltage-dependent potassium channels (ether-á-go-go, EAG; EAG-related gene, ERG; EAG-like channels, ELK) are important regulators of cellular excitability(1-3) and have key roles in diseases such as cardiac long QT syndrome type 2 (LQT2)(4), epilepsy(5), schizophrenia(6) and cancer(7). The intracellular domains of KCNH channels are structurally distinct from other voltage-gated channels. The amino-terminal region contains an eag domain, which is comprised of a Per-Arnt-Sim (PAS) domain and a PAS-cap domain(8), while the carboxy-terminal region contains a cyclic nucleotide-binding homology domain (CNBHD) which is connected to the pore through a C-linker domain. Many disease-causing mutations localize to these specialized intracellular domains, which underlie the unique gating and regulation of KCNH channels(9). It has been suggested that the eag domain may regulate the channel by interacting with either the S4-S5 linker or the CNBHD(8,10). Here we present a 2-Å resolution crystal structure of the eag domain-CNBHD complex of the mouse EAG1 (mEAG1) channel. It displays extensive interactions between the eag domain and the CNBHD, indicating that the regulatory mechanism of the eag domain involves primarily the CNBHD. Surprisingly, the structure reveals that a number of LQT2 mutations at homologous positions in hERG, and cancer-associated mutations in EAG channels, localize to the eag domain-CNBHD interface. Furthermore, mutations at the interface produced dramatic effects on channel gating demonstrating the important physiological role of the eag domain-CNBHD interaction. Our structure of the eag domain-CNBHD complex of mEAG1 provides unique insights into the physiological and pathophysiological mechanisms of KCNH channels. |
format | Online Article Text |
id | pubmed-3910112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
record_format | MEDLINE/PubMed |
spelling | pubmed-39101122014-03-19 The structural mechanism of KCNH-channel regulation by the eag domain Haitin, Yoni Carlson, Anne E. Zagotta, William N. Nature Article The KCNH voltage-dependent potassium channels (ether-á-go-go, EAG; EAG-related gene, ERG; EAG-like channels, ELK) are important regulators of cellular excitability(1-3) and have key roles in diseases such as cardiac long QT syndrome type 2 (LQT2)(4), epilepsy(5), schizophrenia(6) and cancer(7). The intracellular domains of KCNH channels are structurally distinct from other voltage-gated channels. The amino-terminal region contains an eag domain, which is comprised of a Per-Arnt-Sim (PAS) domain and a PAS-cap domain(8), while the carboxy-terminal region contains a cyclic nucleotide-binding homology domain (CNBHD) which is connected to the pore through a C-linker domain. Many disease-causing mutations localize to these specialized intracellular domains, which underlie the unique gating and regulation of KCNH channels(9). It has been suggested that the eag domain may regulate the channel by interacting with either the S4-S5 linker or the CNBHD(8,10). Here we present a 2-Å resolution crystal structure of the eag domain-CNBHD complex of the mouse EAG1 (mEAG1) channel. It displays extensive interactions between the eag domain and the CNBHD, indicating that the regulatory mechanism of the eag domain involves primarily the CNBHD. Surprisingly, the structure reveals that a number of LQT2 mutations at homologous positions in hERG, and cancer-associated mutations in EAG channels, localize to the eag domain-CNBHD interface. Furthermore, mutations at the interface produced dramatic effects on channel gating demonstrating the important physiological role of the eag domain-CNBHD interaction. Our structure of the eag domain-CNBHD complex of mEAG1 provides unique insights into the physiological and pathophysiological mechanisms of KCNH channels. 2013-08-25 2013-09-19 /pmc/articles/PMC3910112/ /pubmed/23975098 http://dx.doi.org/10.1038/nature12487 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Haitin, Yoni Carlson, Anne E. Zagotta, William N. The structural mechanism of KCNH-channel regulation by the eag domain |
title | The structural mechanism of KCNH-channel regulation by the eag domain |
title_full | The structural mechanism of KCNH-channel regulation by the eag domain |
title_fullStr | The structural mechanism of KCNH-channel regulation by the eag domain |
title_full_unstemmed | The structural mechanism of KCNH-channel regulation by the eag domain |
title_short | The structural mechanism of KCNH-channel regulation by the eag domain |
title_sort | structural mechanism of kcnh-channel regulation by the eag domain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910112/ https://www.ncbi.nlm.nih.gov/pubmed/23975098 http://dx.doi.org/10.1038/nature12487 |
work_keys_str_mv | AT haitinyoni thestructuralmechanismofkcnhchannelregulationbytheeagdomain AT carlsonannee thestructuralmechanismofkcnhchannelregulationbytheeagdomain AT zagottawilliamn thestructuralmechanismofkcnhchannelregulationbytheeagdomain AT haitinyoni structuralmechanismofkcnhchannelregulationbytheeagdomain AT carlsonannee structuralmechanismofkcnhchannelregulationbytheeagdomain AT zagottawilliamn structuralmechanismofkcnhchannelregulationbytheeagdomain |