Cargando…
Nonlinear-Model-Based Analysis Methods for Time-Course Gene Expression Data
Microarray technology has produced a huge body of time-course gene expression data and will continue to produce more. Such gene expression data has been proved useful in genomic disease diagnosis and drug design. The challenge is how to uncover useful information from such data by proper analysis me...
Autores principales: | Tian, Li-Ping, Liu, Li-Zhi, Wu, Fang-Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910117/ https://www.ncbi.nlm.nih.gov/pubmed/24516364 http://dx.doi.org/10.1155/2014/313747 |
Ejemplares similares
-
Nonlinear Model-Based Method for Clustering Periodically Expressed Genes
por: Tian, Li-Ping, et al.
Publicado: (2011) -
Inference of gene regulatory subnetworks from time course gene expression data
por: Liang, Xi-Jun, et al.
Publicado: (2012) -
A data-driven clustering method for time course gene expression data
por: Ma, Ping, et al.
Publicado: (2006) -
A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets
por: Liu, Li-Zhi, et al.
Publicado: (2014) -
Modelling time course gene expression data with finite mixtures of linear additive models
por: Grün, Bettina, et al.
Publicado: (2012)