Cargando…

An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting

Development of an improved technique for separating microbial cells from marine sediments and standardization of a high-throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilay...

Descripción completa

Detalles Bibliográficos
Autores principales: Morono, Yuki, Terada, Takeshi, Kallmeyer, Jens, Inagaki, Fumio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910163/
https://www.ncbi.nlm.nih.gov/pubmed/23731283
http://dx.doi.org/10.1111/1462-2920.12153
Descripción
Sumario:Development of an improved technique for separating microbial cells from marine sediments and standardization of a high-throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilayer density gradients of sodium polytungstate and/or Nycodenz, resulting in a notably higher percent recovery of cells than previous methods. The efficiency of cell extraction generally depends on the sediment depth; using the new technique we developed, more than 80% of the total cells were recovered from shallow sediment samples (down to 100 meters in depth), whereas ∼ 50% of cells were recovered from deep samples (100–365 m in depth). The separated cells could be rapidly enumerated using flow cytometry (FCM). The data were in good agreement with those obtained from manual microscopic direct counts over the range 10(4)–10(8) cells cm(−3). We also demonstrated that sedimentary microbial cells can be efficiently collected using a cell sorter. The combined use of our new cell separation and FCM/cell sorting techniques facilitates high-throughput and precise enumeration of microbial cells in sediments and is amenable to various types of single-cell analyses, thereby enhancing our understanding of microbial life in the largely uncharacterized deep subseafloor biosphere.