Cargando…

Computational Investigation of Pkcβ Inhibitors for the Treatment of Diabetic Retinopathy

Diabetic Retinopathy (DR) is one of the attenuating complications of diabetes mellitus. The key gene responsible for causing diabetic retinopathy is protein kinase C beta (PKCβ). Protein kinase C is a family of protein kinase enzymes which are involved in controlling the function of other proteins t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gogula, Susmitha Valli, Divakar, Ch, Satyanarayana, Ch, Kumar, Yedla Phani, Lavanaya, Vadapalli Santhosi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910362/
https://www.ncbi.nlm.nih.gov/pubmed/24497733
http://dx.doi.org/10.6026/97320630091040
Descripción
Sumario:Diabetic Retinopathy (DR) is one of the attenuating complications of diabetes mellitus. The key gene responsible for causing diabetic retinopathy is protein kinase C beta (PKCβ). Protein kinase C is a family of protein kinase enzymes which are involved in controlling the function of other proteins through phosphorylation mechanism and plays a crucial role in signal transduction mechanisms. Among all the PKC isoenzymes, PKCβ could be a significant isoenzyme involved in vascular dysfunction during hyperglycemia. Studies show that oral administration of PKCβ inhibitor Ruboxistaurin (LY333531), decreases vessel permeability and improves retinal condition. Thus compounds that decrease the PKCβ activation would be helpful in the treatment of diabetic retinopathy. The compounds similar to Ruboxistaurin are taken from Super Target database and docking analysis was performed. Maleimide derivative 3 showed highest binding affinities compared to Ruboxistaurin and so we advise that compound may be utilized in the treatment of diabetic retinopathy.