Cargando…

Defining the membrane disruption mechanism of kalata B1 via coarse-grained molecular dynamics simulations

Kalata B1 has been demonstrated to have bioactivity relating to membrane disruption. In this study, we conducted coarse-grained molecular dynamics simulations to gain further insight into kB1 bioactivity. The simulations were performed at various concentrations of kB1 to capture the overall progress...

Descripción completa

Detalles Bibliográficos
Autores principales: Nawae, Wanapinun, Hannongbua, Supa, Ruengjitchatchawalya, Marasri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910381/
https://www.ncbi.nlm.nih.gov/pubmed/24492660
http://dx.doi.org/10.1038/srep03933
Descripción
Sumario:Kalata B1 has been demonstrated to have bioactivity relating to membrane disruption. In this study, we conducted coarse-grained molecular dynamics simulations to gain further insight into kB1 bioactivity. The simulations were performed at various concentrations of kB1 to capture the overall progression of its activity. Two configurations of kB1 oligomers, termed tower-like and wall-like clusters, were detected. The conjugation between the wall-like oligomers resulted in the formation of a ring-like hollow in the kB1 cluster on the membrane surface. Our results indicated that the molecules of kB1 were trapped at the membrane-water interface. The interfacial membrane binding of kB1 induced a positive membrane curvature, and the lipids were eventually extracted from the membrane through the kB1 ring-like hollow into the space inside the kB1 cluster. These findings provide an alternative view of the mechanism of kB1 bioactivity that corresponds with the concept of an interfacial bioactivity model.