Cargando…

Autophagy in Muscle of Glucose-Infusion Hyperglycemia Rats and Streptozotocin-Induced Hyperglycemia Rats via Selective Activation of m-TOR or FoxO3

Autophagy is a conserved process in eukaryotes required for metabolism and is involved in diverse diseases. To investigate autophagy in skeletal muscle under hyperglycemia status, we established two hyperglycemia-rat models that differ in their circulating insulin levels, by glucose infusion and sin...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Pengfei, Huang, Jian, Yang, Jian, Deng, Yujie, Xu, Jun, Zhang, Xiaoyan, Li, Wenyi, Zhang, Hongli, Yang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911944/
https://www.ncbi.nlm.nih.gov/pubmed/24498304
http://dx.doi.org/10.1371/journal.pone.0087254
Descripción
Sumario:Autophagy is a conserved process in eukaryotes required for metabolism and is involved in diverse diseases. To investigate autophagy in skeletal muscle under hyperglycemia status, we established two hyperglycemia-rat models that differ in their circulating insulin levels, by glucose infusion and singe high-dose streptozotocin injection. We then detected expression of autophagy related genes with real-time PCR and western blot. We found that under hyperglycemia status induced by glucose-infusion, autophagy was inhibited in rat skeletal muscle, whereas under streptozotocin-induced hyperglycemia status autophagy was enhanced. Meanwhile, hyperglycemic gastrocnemius muscle was more prone to autophagy than soleus muscle. Furthermore, inhibition of autophagy in skeletal muscle in glucose-infusion hyperglycemia rats was mediated by the m-TOR pathway while m-TOR and FoxO3 both contributed to enhancement of autophagy in gastrocnemius muscle in streptozotocin-induced hyperglycemia rats. These data shows that insulin plays a relatively more important role than hyperglycemia in regulating autophagy in hyperglycemia rat muscle through selectively activating the m-TOR or FoxO3 pathway in a fiber-selective manner.