Cargando…
ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network
BACKGROUND: Gene expression profiles have been broadly used in cancer research as a diagnostic or prognostic signature for the clinical outcome prediction such as stage, grade, metastatic status, recurrence, and patient survival, as well as to potentially improve patient management. However, emergin...
Autores principales: | Kim, Dokyoon, Li, Ruowang, Dudek, Scott M, Ritchie, Marylyn D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912499/ https://www.ncbi.nlm.nih.gov/pubmed/24359638 http://dx.doi.org/10.1186/1756-0381-6-23 |
Ejemplares similares
-
ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci
por: Turner, Stephen D, et al.
Publicado: (2010) -
Knowledge-driven genomic interactions: an application in ovarian cancer
por: Kim, Dokyoon, et al.
Publicado: (2014) -
Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error
por: Motsinger-Reif, Alison A, et al.
Publicado: (2008) -
Collective feature selection to identify crucial epistatic variants
por: Verma, Shefali S., et al.
Publicado: (2018) -
Identification of genetic interaction networks via an evolutionary algorithm evolved Bayesian network
por: Li, Ruowang, et al.
Publicado: (2016)