Cargando…
An efficient automated parameter tuning framework for spiking neural networks
As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plast...
Autores principales: | Carlson, Kristofor D., Nageswaran, Jayram Moorkanikara, Dutt, Nikil, Krichmar, Jeffrey L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912986/ https://www.ncbi.nlm.nih.gov/pubmed/24550771 http://dx.doi.org/10.3389/fnins.2014.00010 |
Ejemplares similares
-
An Efficient Simulation Environment for Modeling Large-Scale Cortical Processing
por: Richert, Micah, et al.
Publicado: (2011) -
Neural correlates of sparse coding and dimensionality reduction
por: Beyeler, Michael, et al.
Publicado: (2019) -
A large-scale neural network model of the influence of neuromodulatory levels on working memory and behavior
por: Avery, Michael C., et al.
Publicado: (2013) -
A spiking model of superior colliculus for bottom-up saliency
por: Richert, Micah, et al.
Publicado: (2013) -
Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning
por: Detorakis, Georgios, et al.
Publicado: (2018)