Cargando…

Oxidative Stress and Bone Resorption Interplay as a Possible Trigger for Postmenopausal Osteoporosis

The underlying mechanism in postmenopausal osteoporosis (PO) is an imbalance between bone resorption and formation. This study was conducted to investigate whether oxidative stress (OxS) might have a role in this derangement of bone homeostasis. In a sample of 167 postmenopausal women, we found that...

Descripción completa

Detalles Bibliográficos
Autores principales: Cervellati, Carlo, Bonaccorsi, Gloria, Cremonini, Eleonora, Romani, Arianna, Fila, Enrica, Castaldini, Maria Cristina, Ferrazzini, Stefania, Giganti, Melchiorre, Massari, Leo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913453/
https://www.ncbi.nlm.nih.gov/pubmed/24524081
http://dx.doi.org/10.1155/2014/569563
Descripción
Sumario:The underlying mechanism in postmenopausal osteoporosis (PO) is an imbalance between bone resorption and formation. This study was conducted to investigate whether oxidative stress (OxS) might have a role in this derangement of bone homeostasis. In a sample of 167 postmenopausal women, we found that increased serum levels of a lipid peroxidation marker, hydroperoxides, were negatively and independently associated with decreased bone mineral density (BMD) in total body (r = −0.192, P < 0.05), lumbar spine (r = −0.282, P < 0.01), and total hip (r = −0.282, P < 0.05), as well as with increased bone resorption rate (r = 0.233, P < 0.05), as assessed by the serum concentration of C-terminal telopeptide of type I collagen (CTX-1). On the contrary, the OxS marker failed to be correlated with the serum levels of bone-specific alkaline phosphatase (BAP), that is, elective marker of bone formation. Importantly, multiple regression analysis revealed that hydroperoxides is a determinant factor for the statistical association between lumbar spine BMD and CTX-1 levels. Taken together, our data suggest that OxS might mediate, by enhancing bone resorption, the uncoupling of bone turnover that underlies PO development.