Cargando…
Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators
The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A(t) is investigated. The well-posedness of this problem is established in B...
Autores principales: | Ashyralyev, Allaberen, Hanalyev, Asker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913520/ https://www.ncbi.nlm.nih.gov/pubmed/24526903 http://dx.doi.org/10.1155/2014/519814 |
Ejemplares similares
-
Well-posedness of parabolic difference equations
por: Ashyralyev, A, et al.
Publicado: (1994) -
Global Well-posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems
por: Qin, Yuming, et al.
Publicado: (2012) -
New difference schemes for partial differential equations
por: Ashyralyev, Allaberen, et al.
Publicado: (2004) -
Local Well-Posedness to the Cauchy Problem for an Equation of the Nagumo Type
por: Lizarazo, Vladimir, et al.
Publicado: (2022) -
A Class of Nonlocal Coupled Semilinear Parabolic System with Nonlocal Boundaries
por: Liu, Hong, et al.
Publicado: (2014)