Cargando…
Comparison of K-Means and Fuzzy c-Means Algorithm Performance for Automated Determination of the Arterial Input Function
The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used...
Autores principales: | Yin, Jiandong, Sun, Hongzan, Yang, Jiawen, Guo, Qiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913570/ https://www.ncbi.nlm.nih.gov/pubmed/24503700 http://dx.doi.org/10.1371/journal.pone.0085884 |
Ejemplares similares
-
Automatic determination of the arterial input function in dynamic susceptibility contrast MRI: comparison of different reproducible clustering algorithms
por: Yin, Jiandong, et al.
Publicado: (2015) -
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
Evaluating the Feasibility of an Agglomerative Hierarchy Clustering Algorithm for the Automatic Detection of the Arterial Input Function Using DSC-MRI
por: Yin, Jiandong, et al.
Publicado: (2014) -
Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design
por: Mata, Edson, et al.
Publicado: (2016) -
Clustering models for hospitals in Jakarta using fuzzy c-means and k-means
por: Setiawan, Karli Eka, et al.
Publicado: (2023)