Cargando…

Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure

Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimur...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Rabia T., Yuki, Kyoko E., Malo, Danielle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913713/
https://www.ncbi.nlm.nih.gov/pubmed/24505352
http://dx.doi.org/10.1371/journal.pone.0088009
_version_ 1782302277806063616
author Khan, Rabia T.
Yuki, Kyoko E.
Malo, Danielle
author_facet Khan, Rabia T.
Yuki, Kyoko E.
Malo, Danielle
author_sort Khan, Rabia T.
collection PubMed
description Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice.
format Online
Article
Text
id pubmed-3913713
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39137132014-02-06 Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure Khan, Rabia T. Yuki, Kyoko E. Malo, Danielle PLoS One Research Article Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice. Public Library of Science 2014-02-04 /pmc/articles/PMC3913713/ /pubmed/24505352 http://dx.doi.org/10.1371/journal.pone.0088009 Text en © 2014 Khan et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Khan, Rabia T.
Yuki, Kyoko E.
Malo, Danielle
Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure
title Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure
title_full Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure
title_fullStr Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure
title_full_unstemmed Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure
title_short Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure
title_sort fine-mapping and phenotypic analysis of the ity3 salmonella susceptibility locus identify a complex genetic structure
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913713/
https://www.ncbi.nlm.nih.gov/pubmed/24505352
http://dx.doi.org/10.1371/journal.pone.0088009
work_keys_str_mv AT khanrabiat finemappingandphenotypicanalysisoftheity3salmonellasusceptibilitylocusidentifyacomplexgeneticstructure
AT yukikyokoe finemappingandphenotypicanalysisoftheity3salmonellasusceptibilitylocusidentifyacomplexgeneticstructure
AT malodanielle finemappingandphenotypicanalysisoftheity3salmonellasusceptibilitylocusidentifyacomplexgeneticstructure