Cargando…

The STIM1/Orai signaling machinery

Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signaling pathway for T-cell activation as well as mast-cell degranulation. The ER-located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconsti...

Descripción completa

Detalles Bibliográficos
Autores principales: Fahrner, Marc, Derler, Isabella, Jardin, Isaac, Romanin, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913757/
https://www.ncbi.nlm.nih.gov/pubmed/24107921
http://dx.doi.org/10.4161/chan.26742
Descripción
Sumario:Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signaling pathway for T-cell activation as well as mast-cell degranulation. The ER-located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Their identification, but even more the recent structural resolution of both proteins by X-ray crystallography has substantially advanced the understanding of the activation mechanism of CRAC channels. In this review, we provide a detailed description of the STIM1/Orai1 signaling pathway thereby focusing on the critical domains mediating both, intra- as well as intermolecular interactions and on the ion permeation pathway. Based on the results of functional studies as well as the recently published crystal structures, we portray a mechanistic view of the steps in the CRAC channel signaling cascade ranging from STIM1 oligomerization over STIM1-Orai1 coupling to the ultimate Orai1 channel activation and permeation.