Cargando…
Stochastic margin-based structure learning of Bayesian network classifiers
The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics ar...
Autores principales: | Pernkopf, Franz, Wohlmayr, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914412/ https://www.ncbi.nlm.nih.gov/pubmed/24511159 http://dx.doi.org/10.1016/j.patcog.2012.08.007 |
Ejemplares similares
-
Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance
por: Wang, Limin, et al.
Publicado: (2019) -
Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure
por: Aydin, Zafer, et al.
Publicado: (2011) -
Efficient Heuristics for Structure Learning of k-Dependence Bayesian Classifier
por: Liu, Yang, et al.
Publicado: (2018) -
Bayesian Network Model Averaging Classifiers by Subbagging
por: Sugahara, Shouta, et al.
Publicado: (2022) -
Stochastic Control for Bayesian Neural Network Training
por: Winkler, Ludwig, et al.
Publicado: (2022)