Cargando…
Infinitely Many Weak Solutions of the p-Laplacian Equation with Nonlinear Boundary Conditions
We study the following p-Laplacian equation with nonlinear boundary conditions: −Δ(p) u + μ(x) | u|(p−2) u = f(x, u) + g(x, u), x ∈ Ω, | ∇u|(p−2)∂u/∂n = η | u|(p−2) u and x ∈ ∂Ω, where Ω is a bounded domain in ℝ(N) with smooth boundary ∂Ω. We prove that the equation has infinitely many weak solution...
Autores principales: | Lu, Feng-Yun, Deng, Gui-Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914418/ https://www.ncbi.nlm.nih.gov/pubmed/24574872 http://dx.doi.org/10.1155/2014/194310 |
Ejemplares similares
-
Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian
por: Sun, Guowei, et al.
Publicado: (2014) -
On the evolutionary p-Laplacian equation with a partial boundary value condition
por: Zhan, Huashui
Publicado: (2018) -
The uniqueness of a nonlinear diffusion equation related to the p-Laplacian
por: Zhan, Huashui
Publicado: (2018) -
Global existence and blow-up results for p-Laplacian parabolic problems under nonlinear boundary conditions
por: Ding, Juntang
Publicado: (2018) -
Two generalized Lyapunov-type inequalities for a fractional p-Laplacian equation with fractional boundary conditions
por: Liu, Yang, et al.
Publicado: (2017)