Cargando…

Proteostasis and longevity: when does aging really begin?

Aging is a complex process regulated by multiple cellular pathways, including the proteostasis network. The proteostasis network consists of molecular chaperones, stress-response transcription factors, and protein degradation machines that sense and respond to proteotoxic stress and protein misfoldi...

Descripción completa

Detalles Bibliográficos
Autores principales: Labbadia, John, Morimoto, Richard I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Faculty of 1000 Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914504/
https://www.ncbi.nlm.nih.gov/pubmed/24592319
http://dx.doi.org/10.12703/P6-7
Descripción
Sumario:Aging is a complex process regulated by multiple cellular pathways, including the proteostasis network. The proteostasis network consists of molecular chaperones, stress-response transcription factors, and protein degradation machines that sense and respond to proteotoxic stress and protein misfolding to ensure cell viability. A loss of proteostasis is associated with aging and age-related disorders in diverse model systems, moreover, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan and suppress age-related disease. However, our understanding of the relationship between aging, proteostasis, and the proteostasis network remains unclear. Here, we propose, from studies in Caenorhabditis elegans, that proteostasis collapse is not gradual but rather a sudden and early life event that triggers proteome mismanagement, thereby affecting a multitude of downstream processes. Furthermore, we propose that this phenomenon is not stochastic but is instead a programmed re-modeling of the proteostasis network that may be conserved in other species. As such, we postulate that changes in the proteostasis network may be one of the earliest events dictating healthy aging in metazoans.