Cargando…
Dynamic Principal Component Analysis with Nonoverlapping Moving Window and Its Applications to Epileptic EEG Classification
Classification of electroencephalography (EEG) is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component anal...
Autores principales: | Xie, Shengkun, Krishnan, Sridhar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914591/ https://www.ncbi.nlm.nih.gov/pubmed/24550706 http://dx.doi.org/10.1155/2014/419308 |
Ejemplares similares
-
Similarity-Based Adaptive Window for Improving Classification of Epileptic Seizures with Imbalance EEG Data Stream
por: Fatlawi, Hayder K., et al.
Publicado: (2022) -
Nonoverlap proportion and the representation of point-biserial variation
por: Luck, Stanley
Publicado: (2020) -
NetNCSP: Nonoverlapping closed sequential pattern mining
por: Wu, Youxi, et al.
Publicado: (2020) -
NetNMSP: Nonoverlapping maximal sequential pattern mining
por: Li, Yan, et al.
Publicado: (2022) -
Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis
por: Lin, Yuan-Pin, et al.
Publicado: (2017)