Cargando…
Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives
Studies of domesticated animals have led to the suggestion that domestication could have significant effects on patterns of molecular evolution. In particular, analyses of mitochondrial genome sequences from domestic dogs and yaks have yielded higher ratios of non-synonymous to synonymous substituti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914681/ https://www.ncbi.nlm.nih.gov/pubmed/24459286 http://dx.doi.org/10.1093/gbe/evu005 |
_version_ | 1782302446008139776 |
---|---|
author | Moray, Camile Lanfear, Robert Bromham, Lindell |
author_facet | Moray, Camile Lanfear, Robert Bromham, Lindell |
author_sort | Moray, Camile |
collection | PubMed |
description | Studies of domesticated animals have led to the suggestion that domestication could have significant effects on patterns of molecular evolution. In particular, analyses of mitochondrial genome sequences from domestic dogs and yaks have yielded higher ratios of non-synonymous to synonymous substitutions in the domesticated lineages than in their wild relatives. These results are important because they imply that changes to selection or population size operating over a short timescale can cause significant changes to the patterns of mitochondrial molecular evolution. In this study, our aim is to test whether the impact on mitochondrial genome evolution is a general feature of domestication or whether it is specific to particular examples. We test whether domesticated mammals and birds have consistently different patterns of molecular evolution than their wild relatives for 16 phylogenetically independent comparisons of mitochondrial genome sequences. We find no consistent difference in branch lengths or d(N)/d(S) between domesticated and wild lineages. We also find no evidence that our failure to detect a consistent pattern is due to the short timescales involved or low genetic distance between domesticated lineages and their wild relatives. However, removing comparisons where the wild relative may also have undergone a bottleneck does reveal a pattern consistent with reduced effective population size in domesticated lineages. Our results suggest that, although some domesticated lineages may have undergone changes to selective regime or effective population size that could have affected mitochondrial evolution, it is not possible to generalize these patterns over all domesticated mammals and birds. |
format | Online Article Text |
id | pubmed-3914681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39146812014-02-06 Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives Moray, Camile Lanfear, Robert Bromham, Lindell Genome Biol Evol Research Article Studies of domesticated animals have led to the suggestion that domestication could have significant effects on patterns of molecular evolution. In particular, analyses of mitochondrial genome sequences from domestic dogs and yaks have yielded higher ratios of non-synonymous to synonymous substitutions in the domesticated lineages than in their wild relatives. These results are important because they imply that changes to selection or population size operating over a short timescale can cause significant changes to the patterns of mitochondrial molecular evolution. In this study, our aim is to test whether the impact on mitochondrial genome evolution is a general feature of domestication or whether it is specific to particular examples. We test whether domesticated mammals and birds have consistently different patterns of molecular evolution than their wild relatives for 16 phylogenetically independent comparisons of mitochondrial genome sequences. We find no consistent difference in branch lengths or d(N)/d(S) between domesticated and wild lineages. We also find no evidence that our failure to detect a consistent pattern is due to the short timescales involved or low genetic distance between domesticated lineages and their wild relatives. However, removing comparisons where the wild relative may also have undergone a bottleneck does reveal a pattern consistent with reduced effective population size in domesticated lineages. Our results suggest that, although some domesticated lineages may have undergone changes to selective regime or effective population size that could have affected mitochondrial evolution, it is not possible to generalize these patterns over all domesticated mammals and birds. Oxford University Press 2014-01-23 /pmc/articles/PMC3914681/ /pubmed/24459286 http://dx.doi.org/10.1093/gbe/evu005 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Research Article Moray, Camile Lanfear, Robert Bromham, Lindell Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives |
title | Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives |
title_full | Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives |
title_fullStr | Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives |
title_full_unstemmed | Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives |
title_short | Domestication and the Mitochondrial Genome: Comparing Patterns and Rates of Molecular Evolution in Domesticated Mammals and Birds and Their Wild Relatives |
title_sort | domestication and the mitochondrial genome: comparing patterns and rates of molecular evolution in domesticated mammals and birds and their wild relatives |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914681/ https://www.ncbi.nlm.nih.gov/pubmed/24459286 http://dx.doi.org/10.1093/gbe/evu005 |
work_keys_str_mv | AT moraycamile domesticationandthemitochondrialgenomecomparingpatternsandratesofmolecularevolutionindomesticatedmammalsandbirdsandtheirwildrelatives AT lanfearrobert domesticationandthemitochondrialgenomecomparingpatternsandratesofmolecularevolutionindomesticatedmammalsandbirdsandtheirwildrelatives AT bromhamlindell domesticationandthemitochondrialgenomecomparingpatternsandratesofmolecularevolutionindomesticatedmammalsandbirdsandtheirwildrelatives |