Cargando…
Crowdsourcing Novel Childhood Predictors of Adult Obesity
Effective and simple screening tools are needed to detect behaviors that are established early in life and have a significant influence on weight gain later in life. Crowdsourcing could be a novel and potentially useful tool to assess childhood predictors of adult obesity. This exploratory study exa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914836/ https://www.ncbi.nlm.nih.gov/pubmed/24505310 http://dx.doi.org/10.1371/journal.pone.0087756 |
_version_ | 1782302474959323136 |
---|---|
author | Bevelander, Kirsten E. Kaipainen, Kirsikka Swain, Robert Dohle, Simone Bongard, Josh C. Hines, Paul D. H. Wansink, Brian |
author_facet | Bevelander, Kirsten E. Kaipainen, Kirsikka Swain, Robert Dohle, Simone Bongard, Josh C. Hines, Paul D. H. Wansink, Brian |
author_sort | Bevelander, Kirsten E. |
collection | PubMed |
description | Effective and simple screening tools are needed to detect behaviors that are established early in life and have a significant influence on weight gain later in life. Crowdsourcing could be a novel and potentially useful tool to assess childhood predictors of adult obesity. This exploratory study examined whether crowdsourcing could generate well-documented predictors in obesity research and, moreover, whether new directions for future research could be uncovered. Participants were recruited through social media to a question-generation website, on which they answered questions and were able to pose new questions that they thought could predict obesity. During the two weeks of data collection, 532 participants (62% female; age = 26.5±6.7; BMI = 29.0±7.0) registered on the website and suggested a total of 56 unique questions. Nineteen of these questions correlated with body mass index (BMI) and covered several themes identified by prior research, such as parenting styles and healthy lifestyle. More importantly, participants were able to identify potential determinants that were related to a lower BMI, but have not been the subject of extensive research, such as parents packing their children’s lunch to school or talking to them about nutrition. The findings indicate that crowdsourcing can reproduce already existing hypotheses and also generate ideas that are less well documented. The crowdsourced predictors discovered in this study emphasize the importance of family interventions to fight obesity. The questions generated by participants also suggest new ways to express known predictors. |
format | Online Article Text |
id | pubmed-3914836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39148362014-02-06 Crowdsourcing Novel Childhood Predictors of Adult Obesity Bevelander, Kirsten E. Kaipainen, Kirsikka Swain, Robert Dohle, Simone Bongard, Josh C. Hines, Paul D. H. Wansink, Brian PLoS One Research Article Effective and simple screening tools are needed to detect behaviors that are established early in life and have a significant influence on weight gain later in life. Crowdsourcing could be a novel and potentially useful tool to assess childhood predictors of adult obesity. This exploratory study examined whether crowdsourcing could generate well-documented predictors in obesity research and, moreover, whether new directions for future research could be uncovered. Participants were recruited through social media to a question-generation website, on which they answered questions and were able to pose new questions that they thought could predict obesity. During the two weeks of data collection, 532 participants (62% female; age = 26.5±6.7; BMI = 29.0±7.0) registered on the website and suggested a total of 56 unique questions. Nineteen of these questions correlated with body mass index (BMI) and covered several themes identified by prior research, such as parenting styles and healthy lifestyle. More importantly, participants were able to identify potential determinants that were related to a lower BMI, but have not been the subject of extensive research, such as parents packing their children’s lunch to school or talking to them about nutrition. The findings indicate that crowdsourcing can reproduce already existing hypotheses and also generate ideas that are less well documented. The crowdsourced predictors discovered in this study emphasize the importance of family interventions to fight obesity. The questions generated by participants also suggest new ways to express known predictors. Public Library of Science 2014-02-05 /pmc/articles/PMC3914836/ /pubmed/24505310 http://dx.doi.org/10.1371/journal.pone.0087756 Text en © 2014 Bevelander et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Bevelander, Kirsten E. Kaipainen, Kirsikka Swain, Robert Dohle, Simone Bongard, Josh C. Hines, Paul D. H. Wansink, Brian Crowdsourcing Novel Childhood Predictors of Adult Obesity |
title | Crowdsourcing Novel Childhood Predictors of Adult Obesity |
title_full | Crowdsourcing Novel Childhood Predictors of Adult Obesity |
title_fullStr | Crowdsourcing Novel Childhood Predictors of Adult Obesity |
title_full_unstemmed | Crowdsourcing Novel Childhood Predictors of Adult Obesity |
title_short | Crowdsourcing Novel Childhood Predictors of Adult Obesity |
title_sort | crowdsourcing novel childhood predictors of adult obesity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914836/ https://www.ncbi.nlm.nih.gov/pubmed/24505310 http://dx.doi.org/10.1371/journal.pone.0087756 |
work_keys_str_mv | AT bevelanderkirstene crowdsourcingnovelchildhoodpredictorsofadultobesity AT kaipainenkirsikka crowdsourcingnovelchildhoodpredictorsofadultobesity AT swainrobert crowdsourcingnovelchildhoodpredictorsofadultobesity AT dohlesimone crowdsourcingnovelchildhoodpredictorsofadultobesity AT bongardjoshc crowdsourcingnovelchildhoodpredictorsofadultobesity AT hinespauldh crowdsourcingnovelchildhoodpredictorsofadultobesity AT wansinkbrian crowdsourcingnovelchildhoodpredictorsofadultobesity |