Cargando…

Reliability of Measurements of Rat Lateral Gastrocnemius Architectural Parameters Obtained from Ultrasound Biomicroscopic Images

This study used ultrasound biomicroscopy (UBM) to quantify the pennation angle (PA) and muscle thickness (MT) of rat skeletal muscle and evaluated the reliability and reproducibility of the method by statistical analysis, determining the coefficient of variation (CV), intraclass correlation coeffici...

Descripción completa

Detalles Bibliográficos
Autores principales: Peixinho, Carolina Carneiro, Martins, Natália Santos da Fonseca, de Oliveira, Liliam Fernandes, Machado, João Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3914850/
https://www.ncbi.nlm.nih.gov/pubmed/24505306
http://dx.doi.org/10.1371/journal.pone.0087691
Descripción
Sumario:This study used ultrasound biomicroscopy (UBM) to quantify the pennation angle (PA) and muscle thickness (MT) of rat skeletal muscle and evaluated the reliability and reproducibility of the method by statistical analysis, determining the coefficient of variation (CV), intraclass correlation coefficient (ICC) and typical error of measurement. A UBM system with a center frequency of 40 MHz was used to acquire images of the right lateral gastrocnemius of ten male Wistar rats on two different days and with two ankle positions (90° or 150°). Two independent measurements of the PA and MT were randomly performed in each of three picture frames. The analysis resulted in CVs of 10.47% and 4.81% for the PA and the MT, respectively, for the ankle at 90° and 9.24% and 5.98% for the ankle at 150°. Additionally, the ICC values ranged from 0.75 to 0.92 for the PA and 0.57 to 0.99 for the MT. Statistically significant differences between the ankle positions were observed for the PA (p = 0.00013). The reliability of the PA and MT measurements for the rat right lateral gastrocnemius, determined from the ultrasound biomicroscopy images, was high (>0.90) for the methodology proposed. This finding indicates the potential of ultrasound biomicroscopy for quantitative muscle characterization and the longitudinal examination of tissue adaptation to different conditions of use, disease and rehabilitation.