Cargando…
Diagnosis of Noonan syndrome and related disorders using target next generation sequencing
BACKGROUND: Noonan syndrome is an autosomal dominant developmental disorder with a high phenotypic variability, which shares clinical features with other rare conditions, including LEOPARD syndrome, cardiofaciocutaneous syndrome, Noonan-like syndrome with loose anagen hair, and Costello syndrome. Th...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915031/ https://www.ncbi.nlm.nih.gov/pubmed/24451042 http://dx.doi.org/10.1186/1471-2350-15-14 |
_version_ | 1782302513309941760 |
---|---|
author | Lepri, Francesca Romana Scavelli, Rossana Digilio, Maria Cristina Gnazzo, Maria Grotta, Simona Dentici, Maria Lisa Pisaneschi, Elisa Sirleto, Pietro Capolino, Rossella Baban, Anwar Russo, Serena Franchin, Tiziana Angioni, Adriano Dallapiccola, Bruno |
author_facet | Lepri, Francesca Romana Scavelli, Rossana Digilio, Maria Cristina Gnazzo, Maria Grotta, Simona Dentici, Maria Lisa Pisaneschi, Elisa Sirleto, Pietro Capolino, Rossella Baban, Anwar Russo, Serena Franchin, Tiziana Angioni, Adriano Dallapiccola, Bruno |
author_sort | Lepri, Francesca Romana |
collection | PubMed |
description | BACKGROUND: Noonan syndrome is an autosomal dominant developmental disorder with a high phenotypic variability, which shares clinical features with other rare conditions, including LEOPARD syndrome, cardiofaciocutaneous syndrome, Noonan-like syndrome with loose anagen hair, and Costello syndrome. This group of related disorders, so-called RASopathies, is caused by germline mutations in distinct genes encoding for components of the RAS-MAPK signalling pathway. Due to high number of genes associated with these disorders, standard diagnostic testing requires expensive and time consuming approaches using Sanger sequencing. In this study we show how targeted Next Generation Sequencing (NGS) technique can enable accurate, faster and cost-effective diagnosis of RASopathies. METHODS: In this study we used a validation set of 10 patients (6 positive controls previously characterized by Sanger-sequencing and 4 negative controls) to assess the analytical sensitivity and specificity of the targeted NGS. As second step, a training set of 80 enrolled patients with a clinical suspect of RASopathies has been tested. Targeted NGS has been successfully applied over 92% of the regions of interest, including exons for the following genes: PTPN11, SOS1, RAF1, BRAF, HRAS, KRAS, NRAS, SHOC, MAP2K1, MAP2K2, CBL. RESULTS: All expected variants in patients belonging to the validation set have been identified by targeted NGS providing a detection rate of 100%. Furthermore, all the newly detected mutations in patients from the training set have been confirmed by Sanger sequencing. Absence of any false negative event has been excluded by testing some of the negative patients, randomly selected, with Sanger sequencing. CONCLUSION: Here we show how molecular testing of RASopathies by targeted NGS could allow an early and accurate diagnosis for all enrolled patients, enabling a prompt diagnosis especially for those patients with mild, non-specific or atypical features, in whom the detection of the causative mutation usually requires prolonged diagnostic timings when using standard routine. This approach strongly improved genetic counselling and clinical management. |
format | Online Article Text |
id | pubmed-3915031 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39150312014-02-07 Diagnosis of Noonan syndrome and related disorders using target next generation sequencing Lepri, Francesca Romana Scavelli, Rossana Digilio, Maria Cristina Gnazzo, Maria Grotta, Simona Dentici, Maria Lisa Pisaneschi, Elisa Sirleto, Pietro Capolino, Rossella Baban, Anwar Russo, Serena Franchin, Tiziana Angioni, Adriano Dallapiccola, Bruno BMC Med Genet Research Article BACKGROUND: Noonan syndrome is an autosomal dominant developmental disorder with a high phenotypic variability, which shares clinical features with other rare conditions, including LEOPARD syndrome, cardiofaciocutaneous syndrome, Noonan-like syndrome with loose anagen hair, and Costello syndrome. This group of related disorders, so-called RASopathies, is caused by germline mutations in distinct genes encoding for components of the RAS-MAPK signalling pathway. Due to high number of genes associated with these disorders, standard diagnostic testing requires expensive and time consuming approaches using Sanger sequencing. In this study we show how targeted Next Generation Sequencing (NGS) technique can enable accurate, faster and cost-effective diagnosis of RASopathies. METHODS: In this study we used a validation set of 10 patients (6 positive controls previously characterized by Sanger-sequencing and 4 negative controls) to assess the analytical sensitivity and specificity of the targeted NGS. As second step, a training set of 80 enrolled patients with a clinical suspect of RASopathies has been tested. Targeted NGS has been successfully applied over 92% of the regions of interest, including exons for the following genes: PTPN11, SOS1, RAF1, BRAF, HRAS, KRAS, NRAS, SHOC, MAP2K1, MAP2K2, CBL. RESULTS: All expected variants in patients belonging to the validation set have been identified by targeted NGS providing a detection rate of 100%. Furthermore, all the newly detected mutations in patients from the training set have been confirmed by Sanger sequencing. Absence of any false negative event has been excluded by testing some of the negative patients, randomly selected, with Sanger sequencing. CONCLUSION: Here we show how molecular testing of RASopathies by targeted NGS could allow an early and accurate diagnosis for all enrolled patients, enabling a prompt diagnosis especially for those patients with mild, non-specific or atypical features, in whom the detection of the causative mutation usually requires prolonged diagnostic timings when using standard routine. This approach strongly improved genetic counselling and clinical management. BioMed Central 2014-01-23 /pmc/articles/PMC3915031/ /pubmed/24451042 http://dx.doi.org/10.1186/1471-2350-15-14 Text en Copyright © 2014 Lepri et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Lepri, Francesca Romana Scavelli, Rossana Digilio, Maria Cristina Gnazzo, Maria Grotta, Simona Dentici, Maria Lisa Pisaneschi, Elisa Sirleto, Pietro Capolino, Rossella Baban, Anwar Russo, Serena Franchin, Tiziana Angioni, Adriano Dallapiccola, Bruno Diagnosis of Noonan syndrome and related disorders using target next generation sequencing |
title | Diagnosis of Noonan syndrome and related disorders using target next generation sequencing |
title_full | Diagnosis of Noonan syndrome and related disorders using target next generation sequencing |
title_fullStr | Diagnosis of Noonan syndrome and related disorders using target next generation sequencing |
title_full_unstemmed | Diagnosis of Noonan syndrome and related disorders using target next generation sequencing |
title_short | Diagnosis of Noonan syndrome and related disorders using target next generation sequencing |
title_sort | diagnosis of noonan syndrome and related disorders using target next generation sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915031/ https://www.ncbi.nlm.nih.gov/pubmed/24451042 http://dx.doi.org/10.1186/1471-2350-15-14 |
work_keys_str_mv | AT leprifrancescaromana diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT scavellirossana diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT digiliomariacristina diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT gnazzomaria diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT grottasimona diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT denticimarialisa diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT pisaneschielisa diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT sirletopietro diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT capolinorossella diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT babananwar diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT russoserena diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT franchintiziana diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT angioniadriano diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing AT dallapiccolabruno diagnosisofnoonansyndromeandrelateddisordersusingtargetnextgenerationsequencing |