Cargando…
Convergence in parameters and predictions using computational experimental design
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, ho...
Autores principales: | Hagen, David R., White, Jacob K., Tidor, Bruce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915829/ https://www.ncbi.nlm.nih.gov/pubmed/24511374 http://dx.doi.org/10.1098/rsfs.2013.0008 |
Ejemplares similares
-
Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology
por: Toni, Tina, et al.
Publicado: (2013) -
Rational Approaches to
Improving Selectivity
in Drug Design
por: Huggins, David J., et al.
Publicado: (2012) -
Stimulus Design for Model Selection and Validation in Cell Signaling
por: Apgar, Joshua F, et al.
Publicado: (2008) -
Molecular mechanisms and design principles for promiscuous inhibitors to avoid drug resistance: Lessons learned from HIV‐1 protease inhibition
por: Shen, Yang, et al.
Publicado: (2015) -
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
por: White, Andrew, et al.
Publicado: (2016)